No Arabic abstract
3D face reconstruction plays a very important role in many real-world multimedia applications, including digital entertainment, social media, affection analysis, and person identification. The de-facto pipeline for estimating the parametric face model from an image requires to firstly detect the facial regions with landmarks, and then crop each face to feed the deep learning-based regressor. Comparing to the conventional methods performing forward inference for each detected instance independently, we suggest an effective end-to-end framework for multi-face 3D reconstruction, which is able to predict the model parameters of multiple instances simultaneously using single network inference. Our proposed approach not only greatly reduces the computational redundancy in feature extraction but also makes the deployment procedure much easier using the single network model. More importantly, we employ the same global camera model for the reconstructed faces in each image, which makes it possible to recover the relative head positions and orientations in the 3D scene. We have conducted extensive experiments to evaluate our proposed approach on the sparse and dense face alignment tasks. The experimental results indicate that our proposed approach is very promising on face alignment tasks without fully-supervision and pre-processing like detection and crop. Our implementation is publicly available at url{https://github.com/kalyo-zjl/WM3DR}.
Recently, deep learning based 3D face reconstruction methods have shown promising results in both quality and efficiency.However, training deep neural networks typically requires a large volume of data, whereas face images with ground-truth 3D face shapes are scarce. In this paper, we propose a novel deep 3D face reconstruction approach that 1) leverages a robust, hybrid loss function for weakly-supervised learning which takes into account both low-level and perception-level information for supervision, and 2) performs multi-image face reconstruction by exploiting complementary information from different images for shape aggregation. Our method is fast, accurate, and robust to occlusion and large pose. We provide comprehensive experiments on three datasets, systematically comparing our method with fifteen recent methods and demonstrating its state-of-the-art performance.
Recent learning-based approaches, in which models are trained by single-view images have shown promising results for monocular 3D face reconstruction, but they suffer from the ill-posed face pose and depth ambiguity issue. In contrast to previous works that only enforce 2D feature constraints, we propose a self-supervised training architecture by leveraging the multi-view geometry consistency, which provides reliable constraints on face pose and depth estimation. We first propose an occlusion-aware view synthesis method to apply multi-view geometry consistency to self-supervised learning. Then we design three novel loss functions for multi-view consistency, including the pixel consistency loss, the depth consistency loss, and the facial landmark-based epipolar loss. Our method is accurate and robust, especially under large variations of expressions, poses, and illumination conditions. Comprehensive experiments on the face alignment and 3D face reconstruction benchmarks have demonstrated superiority over state-of-the-art methods. Our code and model are released in https://github.com/jiaxiangshang/MGCNet.
Monocular 3D human pose and shape estimation is challenging due to the many degrees of freedom of the human body and thedifficulty to acquire training data for large-scale supervised learning in complex visual scenes. In this paper we present practical semi-supervised and self-supervised models that support training and good generalization in real-world images and video. Our formulation is based on kinematic latent normalizing flow representations and dynamics, as well as differentiable, semantic body part alignment loss functions that support self-supervised learning. In extensive experiments using 3D motion capture datasets like CMU, Human3.6M, 3DPW, or AMASS, as well as image repositories like COCO, we show that the proposed methods outperform the state of the art, supporting the practical construction of an accurate family of models based on large-scale training with diverse and incompletely labeled image and video data.
A caricature is an artistic form of a persons picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: https://github.com/ZJULearning/CariFaceParsing .
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels with available 3D information, which is much easier to obtain with advanced sensors. We manually labeled a subset of the 2D-3D Semantics(2D-3D-S) dataset with bounding boxes, and introduce our 2D-3D inference module to generate accurate pixel-wise segment proposal masks. Guided by 3D information, we first generate a point cloud of objects and calculate objectness probability score for each point. Then we project the point cloud with objectness probabilities back to 2D images followed by a refinement step to obtain segment proposals, which are treated as pseudo labels to train a semantic segmentation network. Our method works in a recursive manner to gradually refine the above-mentioned segment proposals. Extensive experimental results on the 2D-3D-S dataset show that the proposed method can generate accurate segment proposals when bounding box labels are available on only a small subset of training images. Performance comparison with recent state-of-the-art methods further illustrates the effectiveness of our method.