Do you want to publish a course? Click here

Weakly-supervised Caricature Face Parsing through Domain Adaptation

101   0   0.0 ( 0 )
 Added by Wenqing Chu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A caricature is an artistic form of a persons picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: https://github.com/ZJULearning/CariFaceParsing .



rate research

Read More

Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images, enabling deep understanding of visual content, with many applications such as visual reasoning and image retrieval. Nevertheless, existing SGG methods require millions of manually annotated bounding boxes for training, and are computationally inefficient, as they exhaustively process all pairs of object proposals to detect predicates. In this paper, we address those two limitations by first proposing a generalized formulation of SGG, namely Visual Semantic Parsing, which disentangles entity and predicate recognition, and enables sub-quadratic performance. Then we propose the Visual Semantic Parsing Network, VSPNet, based on a dynamic, attention-based, bipartite message passing framework that jointly infers graph nodes and edges through an iterative process. Additionally, we propose the first graph-based weakly supervised learning framework, based on a novel graph alignment algorithm, which enables training without bounding box annotations. Through extensive experiments, we show that VSPNet outperforms weakly supervised baselines significantly and approaches fully supervised performance, while being several times faster. We publicly release the source code of our method.
Caricature generation is an interesting yet challenging task. The primary goal is to generate plausible caricatures with reasonable exaggerations given face images. Conventional caricature generation approaches mainly use low-level geometric transformations such as image warping to generate exaggerated images, which lack richness and diversity in terms of content and style. The recent progress in generative adversarial networks (GANs) makes it possible to learn an image-to-image transformation from data, so that richer contents and styles can be generated. However, directly applying the GAN-based models to this task leads to unsatisfactory results because there is a large variance in the caricature distribution. Moreover, some models require strictly paired training data which largely limits their usage scenarios. In this paper, we propose CariGAN overcome these problems. Instead of training on paired data, CariGAN learns transformations only from weakly paired images. Specifically, to enforce reasonable exaggeration and facial deformation, facial landmarks are adopted as an additional condition to constrain the generated image. Furthermore, an attention mechanism is introduced to encourage our model to focus on the key facial parts so that more vivid details in these regions can be generated. Finally, a Diversity Loss is proposed to encourage the model to produce diverse results to help alleviate the `mode collapse problem of the conventional GAN-based models. Extensive experiments on a new large-scale `WebCaricature dataset show that the proposed CariGAN can generate more plausible caricatures with larger diversity compared with the state-of-the-art models.
Automatic pain assessment has an important potential diagnostic value for populations that are incapable of articulating their pain experiences. As one of the dominating nonverbal channels for eliciting pain expression events, facial expressions has been widely investigated for estimating the pain intensity of individual. However, using state-of-the-art deep learning (DL) models in real-world pain estimation applications poses several challenges related to the subjective variations of facial expressions, operational capture conditions, and lack of representative training videos with labels. Given the cost of annotating intensity levels for every video frame, we propose a weakly-supervised domain adaptation (WSDA) technique that allows for training 3D CNNs for spatio-temporal pain intensity estimation using weakly labeled videos, where labels are provided on a periodic basis. In particular, WSDA integrates multiple instance learning into an adversarial deep domain adaptation framework to train an Inflated 3D-CNN (I3D) model such that it can accurately estimate pain intensities in the target operational domain. The training process relies on weak target loss, along with domain loss and source loss for domain adaptation of the I3D model. Experimental results obtained using labeled source domain RECOLA videos and weakly-labeled target domain UNBC-McMaster videos indicate that the proposed deep WSDA approach can achieve significantly higher level of sequence (bag)-level and frame (instance)-level pain localization accuracy than related state-of-the-art approaches.
Fully convolutional networks (FCN) have achieved great success in human parsing in recent years. In conventional human parsing tasks, pixel-level labeling is required for guiding the training, which usually involves enormous human labeling efforts. To ease the labeling efforts, we propose a novel weakly supervised human parsing method which only requires simple object keypoint annotations for learning. We develop an iterative learning method to generate pseudo part segmentation masks from keypoint labels. With these pseudo masks, we train an FCN network to output pixel-level human parsing predictions. Furthermore, we develop a correlation network to perform joint prediction of part and object segmentation masks and improve the segmentation performance. The experiment results show that our weakly supervised method is able to achieve very competitive human parsing results. Despite our method only uses simple keypoint annotations for learning, we are able to achieve comparable performance with fully supervised methods which use the expensive pixel-level annotations.
3D face reconstruction plays a very important role in many real-world multimedia applications, including digital entertainment, social media, affection analysis, and person identification. The de-facto pipeline for estimating the parametric face model from an image requires to firstly detect the facial regions with landmarks, and then crop each face to feed the deep learning-based regressor. Comparing to the conventional methods performing forward inference for each detected instance independently, we suggest an effective end-to-end framework for multi-face 3D reconstruction, which is able to predict the model parameters of multiple instances simultaneously using single network inference. Our proposed approach not only greatly reduces the computational redundancy in feature extraction but also makes the deployment procedure much easier using the single network model. More importantly, we employ the same global camera model for the reconstructed faces in each image, which makes it possible to recover the relative head positions and orientations in the 3D scene. We have conducted extensive experiments to evaluate our proposed approach on the sparse and dense face alignment tasks. The experimental results indicate that our proposed approach is very promising on face alignment tasks without fully-supervision and pre-processing like detection and crop. Our implementation is publicly available at url{https://github.com/kalyo-zjl/WM3DR}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا