Do you want to publish a course? Click here

Persuading Voters in District-based Elections

73   0   0.0 ( 0 )
 Added by Matteo Castiglioni
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We focus on the scenario in which an agent can exploit his information advantage to manipulate the outcome of an election. In particular, we study district-based elections with two candidates, in which the winner of the election is the candidate that wins in the majority of the districts. District-based elections are adopted worldwide (e.g., UK and USA) and are a natural extension of widely studied voting mechanisms (e.g., k-voting and plurality voting). We resort to the Bayesian persuasion framework, where the manipulator (sender) strategically discloses information to the voters (receivers) that update their beliefs rationally. We study both private signaling, in which the sender can use a private communication channel per receiver, and public signaling, in which the sender can use a single communication channel for all the receivers. Furthermore, for the first time, we introduce semi-public signaling in which the sender can use a single communication channel per district. We show that there is a sharp distinction between private and (semi-)public signaling. In particular, optimal private signaling schemes can provide an arbitrarily better probability of victory than (semi-)public ones and can be computed efficiently, while optimal (semi-)public signaling schemes cannot be approximated to within any factor in polynomial time unless P=NP. However, we show that reasonable relaxations allow the design of multi-criteria PTASs for optimal (semi-)public signaling schemes. In doing so, we introduce a novel property, namely comparative stability, and we design a bi-criteria PTAS for public signaling in general Bayesian persuasion problems beyond elections when the senders utility function is state-dependent.



rate research

Read More

We focus on the following natural question: is it possible to influence the outcome of a voting process through the strategic provision of information to voters who update their beliefs rationally? We investigate whether it is computationally tractable to design a signaling scheme maximizing the probability with which the senders preferred candidate is elected. We focus on the model recently introduced by Arieli and Babichenko (2019) (i.e., without inter-agent externalities), and consider, as explanatory examples, $k$-voting rule and plurality voting. There is a sharp contrast between the case in which private signals are allowed and the more restrictive setting in which only public signals are allowed. In the former, we show that an optimal signaling scheme can be computed efficiently both under a $k$-voting rule and plurality voting. In establishing these results, we provide two general (i.e., applicable to settings beyond voting) contributions. Specifically, we extend a well known result by Dughmi and Xu (2017) to more general settings, and prove that, when the senders utility function is anonymous, computing an optimal signaling scheme is fixed parameter tractable w.r.t. the number of receivers actions. In the public signaling case, we show that the senders optimal expected return cannot be approximated to within any factor under a $k$-voting rule. This negative result easily extends to plurality voting and problems where utility functions are anonymous.
Elections involving a very large voter population often lead to outcomes that surprise many. This is particularly important for the elections in which results affect the economy of a sizable population. A better prediction of the true outcome helps reduce the surprise and keeps the voters prepared. This paper starts from the basic observation that individuals in the underlying population build estimates of the distribution of preferences of the whole population based on their local neighborhoods. The outcome of the election leads to a surprise if these local estimates contradict the outcome of the election for some fixed voting rule. To get a quantitative understanding, we propose a simple mathematical model of the setting where the individuals in the population and their connections (through geographical proximity, social networks etc.) are described by a random graph with connection probabilities that are biased based on the preferences of the individuals. Each individual also has some estimate of the bias in their connections. We show that the election outcome leads to a surprise if the discrepancy between the estimated bias and the true bias in the local connections exceeds a certain threshold, and confirm the phenomenon that surprising outcomes are associated only with {em closely contested elections}. We compare standard voting rules based on their performance on surprise and show that they have different behavior for different parts of the population. It also hints at an impossibility that a single voting rule will be less surprising for {em all} parts of a population. Finally, we experiment with the UK-EU referendum (a.k.a. Brexit) dataset that attest some of our theoretical predictions.
Constructive election control considers the problem of an adversary who seeks to sway the outcome of an electoral process in order to ensure that their favored candidate wins. We consider the computational problem of constructive election control via issue selection. In this problem, a party decides which political issues to focus on to ensure victory for the favored candidate. We also consider a variation in which the goal is to maximize the number of voters supporting the favored candidate. We present strong negative results, showing, for example, that the latter problem is inapproximable for any constant factor. On the positive side, we show that when issues are binary, the problem becomes tractable in several cases, and admits a 2-approximation in the two-candidate case. Finally, we develop integer programming and heuristic methods for these problems.
Prior work on the complexity of bribery assumes that the bribery happens simultaneously, and that the briber has full knowledge of all voters votes. But neither of those assumptions always holds. In many real-world settings, votes come in sequentially, and the briber may have a use-it-or-lose-it moment to decide whether to bribe/alter a given vote, and at the time of making that decision, the briber may not know what votes remaining voters are planning on casting. In this paper, we introduce a model for, and initiate the study of, bribery in such an online, sequential setting. We show that even for election systems whose winner-determination problem is polynomial-time computable, an online, sequential setting may vastly increase the complexity of bribery, in fact jumping the problem up to completeness for high levels of the polynomial hierarchy or even PSPACE. On the other hand, we show that for some natural, important election systems, such a dramatic complexity increase does not occur, and we pinpoint the complexity of their bribery problems in the online, sequential setting.
We study higher statistical moments of Distortion for randomized social choice in a metric implicit utilitarian model. The Distortion of a social choice mechanism is the expected approximation factor with respect to the optimal utilitarian social cost (OPT). The $k^{th}$ moment of Distortion is the expected approximation factor with respect to the $k^{th}$ power of OPT. We consider mechanisms that elicit alternatives by randomly sampling voters for their favorite alternative. We design two families of mechanisms that provide constant (with respect to the number of voters and alternatives) $k^{th}$ moment of Distortion using just $k$ samples if all voters can then participate in a vote among the proposed alternatives, or $2k-1$ samples if only the sampled voters can participate. We also show that these numbers of samples are tight. Such mechanisms deviate from a constant approximation to OPT with probability that drops exponentially in the number of samples, independent of the total number of voters and alternatives. We conclude with simulations on real-world Participatory Budgeting data to qualitatively complement our theoretical insights.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا