Do you want to publish a course? Click here

MEG Source Localization via Deep Learning

482   0   0.0 ( 0 )
 Added by Amir Adler Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a deep learning solution to the problem of localization of magnetoencephalography (MEG) brain signals. The proposed deep model architectures are tuned for single and multiple time point MEG data, and can estimate varying numbers of dipole sources. Results from simulated MEG data on the cortical surface of a real human subject demonstrated improvements against the popular RAP-MUSIC localization algorithm in specific scenarios with varying SNR levels, inter-source correlation values, and number of sources. Importantly, the deep learning models had robust performance to forward model errors and a significant reduction in computation time, to a fraction of 1 ms, paving the way to real-time MEG source localization.



rate research

Read More

We present a novel solution to the problem of localization of MEG and EEG brain signals. The solution is sequential and iterative, and is based on minimizing the least-squares (LS)criterion by the Alternating Projection (AP) algorithm, which is well known in the context of array signal processing. Unlike existing scanning solutions belonging to the beamformer and multiple-signal classification (MUSIC) families, the algorithm has good performance in low signal-to-noise ratio (SNR) and can cope with closely spaced sources and any mixture of correlated sources. Results from simulated and experimental MEG data from a real phantom demonstrated robust performance across an extended SNR range, the entire inter-source correlation range, and across multiple sources, with consistently superior localization accuracy than popular scanning methods.
In this paper, we incorporate a graph filter deconvolution step into the classical geometric convolutional neural network pipeline. More precisely, under the assumption that the graph domain plays a role in the generation of the observed graph signals, we pre-process every signal by passing it through a sparse deconvolution operation governed by a pre-specified filter bank. This deconvolution operation is formulated as a group-sparse recovery problem, and convex relaxations that can be solved efficiently are put forth. The deconvolved signals are then fed into the geometric convolutional neural network, yielding better classification performance than their unprocessed counterparts. Numerical experiments showcase the effectiveness of the deconvolution step on classification tasks on both synthetic and real-world settings.
In this paper, we present a new interpretation of non-negatively constrained convolutional coding problems as blind deconvolution problems with spatially variant point spread function. In this light, we propose an optimization framework that generalizes our previous work on non-negative group sparsity for convolutional models. We then link these concepts to source localization problems that arise in scientific imaging and provide a visual example on an image derived from data captured by the Hubble telescope.
A deep learning approach based on big data is proposed to locate broadband acoustic sources using a single hydrophone in ocean waveguides with uncertain bottom parameters. Several 50-layer residual neural networks, trained on a huge number of sound field replicas generated by an acoustic propagation model, are used to handle the bottom uncertainty in source localization. A two-step training strategy is presented to improve the training of the deep models. First, the range is discretized in a coarse (5 km) grid. Subsequently, the source range within the selected interval and source depth are discretized on a finer (0.1 km and 2 m) grid. The deep learning methods were demonstrated for simulated magnitude-only multi-frequency data in uncertain environments. Experimental data from the China Yellow Sea also validated the approach.
This article is a survey on deep learning methods for single and multiple sound source localization. We are particularly interested in sound source localization in indoor/domestic environment, where reverberation and diffuse noise are present. We provide an exhaustive topography of the neural-based localization literature in this context, organized according to several aspects: the neural network architecture, the type of input features, the output strategy (classification or regression), the types of data used for model training and evaluation, and the model training strategy. This way, an interested reader can easily comprehend the vast panorama of the deep learning-based sound source localization methods. Tables summarizing the literature survey are provided at the end of the paper for a quick search of methods with a given set of target characteristics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا