No Arabic abstract
In this paper, we incorporate a graph filter deconvolution step into the classical geometric convolutional neural network pipeline. More precisely, under the assumption that the graph domain plays a role in the generation of the observed graph signals, we pre-process every signal by passing it through a sparse deconvolution operation governed by a pre-specified filter bank. This deconvolution operation is formulated as a group-sparse recovery problem, and convex relaxations that can be solved efficiently are put forth. The deconvolved signals are then fed into the geometric convolutional neural network, yielding better classification performance than their unprocessed counterparts. Numerical experiments showcase the effectiveness of the deconvolution step on classification tasks on both synthetic and real-world settings.
Short-and-sparse deconvolution (SaSD) is the problem of extracting localized, recurring motifs in signals with spatial or temporal structure. Variants of this problem arise in applications such as image deblurring, microscopy, neural spike sorting, and more. The problem is challenging in both theory and practice, as natural optimization formulations are nonconvex. Moreover, practical deconvolution problems involve smooth motifs (kernels) whose spectra decay rapidly, resulting in poor conditioning and numerical challenges. This paper is motivated by recent theoretical advances, which characterize the optimization landscape of a particular nonconvex formulation of SaSD. This is used to derive a $provable$ algorithm which exactly solves certain non-practical instances of the SaSD problem. We leverage the key ideas from this theory (sphere constraints, data-driven initialization) to develop a $practical$ algorithm, which performs well on data arising from a range of application areas. We highlight key additional challenges posed by the ill-conditioning of real SaSD problems, and suggest heuristics (acceleration, continuation, reweighting) to mitigate them. Experiments demonstrate both the performance and generality of the proposed method.
We propose a blind deconvolution method for signals on graphs, with the exact sparseness constraint for the original signal. Graph blind deconvolution is an algorithm for estimating the original signal on a graph from a set of blurred and noisy measurements. Imposing a constraint on the number of nonzero elements is desirable for many different applications. This paper deals with the problem with constraints placed on the exact number of original sources, which is given by an optimization problem with an $ell_0$ norm constraint. We solve this non-convex optimization problem using the ADMM iterative solver. Numerical experiments using synthetic signals demonstrate the effectiveness of the proposed method.
We present a deep learning solution to the problem of localization of magnetoencephalography (MEG) brain signals. The proposed deep model architectures are tuned for single and multiple time point MEG data, and can estimate varying numbers of dipole sources. Results from simulated MEG data on the cortical surface of a real human subject demonstrated improvements against the popular RAP-MUSIC localization algorithm in specific scenarios with varying SNR levels, inter-source correlation values, and number of sources. Importantly, the deep learning models had robust performance to forward model errors and a significant reduction in computation time, to a fraction of 1 ms, paving the way to real-time MEG source localization.
For conventional computed tomography (CT) image reconstruction tasks, the most popular method is the so-called filtered-back-projection (FBP) algorithm. In it, the acquired Radon projections are usually filtered first by a ramp kernel before back-projected to generate CT images. In this work, as a contrary, we realized the idea of image-domain backproject-filter (BPF) CT image reconstruction using the deep learning techniques for the first time. With a properly designed convolutional neural network (CNN), preliminary results demonstrate that it is feasible to reconstruct CT images with maintained high spatial resolution and accurate pixel values from the highly blurred back-projection image, i.e., laminogram. In addition, experimental results also show that this deconvolution-based CT image reconstruction network has the potential to reduce CT image noise (up to 20%), indicating that patient radiation dose may be reduced. Due to these advantages, this proposed CNN-based image-domain BPF type CT image reconstruction scheme provides promising prospects in generating high spatial resolution, low-noise CT images for future clinical applications.
In the field of signal processing on graphs, graph filters play a crucial role in processing the spectrum of graph signals. This paper proposes two different strategies for designing autoregressive moving average (ARMA) graph filters on both directed and undirected graphs. The first approach is inspired by Pronys method, which considers a modified error between the modeled and the desired frequency response. The second technique is based on an iterative approach, which finds the filter coefficients by iteratively minimizing the true error (instead of the modified error) between the modeled and the desired frequency response. The performance of the proposed algorithms is evaluated and compared with finite impulse response (FIR) graph filters, on both synthetic and real data. The obtained results show that ARMA filters outperform FIR filters in terms of approximation accuracy and they are suitable for graph signal interpolation, compression and prediction.