No Arabic abstract
In this paper, we present a new interpretation of non-negatively constrained convolutional coding problems as blind deconvolution problems with spatially variant point spread function. In this light, we propose an optimization framework that generalizes our previous work on non-negative group sparsity for convolutional models. We then link these concepts to source localization problems that arise in scientific imaging and provide a visual example on an image derived from data captured by the Hubble telescope.
State-of-the-art methods for Convolutional Sparse Coding usually employ Fourier-domain solvers in order to speed up the convolution operators. However, this approach is not without shortcomings. For example, Fourier-domain representations implicitly assume circular boundary conditions and make it hard to fully exploit the sparsity of the problem as well as the small spatial support of the filters. In this work, we propose a novel stochastic spatial-domain solver, in which a randomized subsampling strategy is introduced during the learning sparse codes. Afterwards, we extend the proposed strategy in conjunction with online learning, scaling the CSC model up to very large sample sizes. In both cases, we show experimentally that the proposed subsampling strategy, with a reasonable selection of the subsampling rate, outperforms the state-of-the-art frequency-domain solvers in terms of execution time without losing the learning quality. Finally, we evaluate the effectiveness of the over-complete dictionary learned from large-scale datasets, which demonstrates an improved sparse representation of the natural images on account of more abundant learned image features.
Convolutional sparse coding (CSC) can learn representative shift-invariant patterns from multiple kinds of data. However, existing CSC methods can only model noises from Gaussian distribution, which is restrictive and unrealistic. In this paper, we propose a general CSC model capable of dealing with complicated unknown noise. The noise is now modeled by Gaussian mixture model, which can approximate any continuous probability density function. We use the expectation-maximization algorithm to solve the problem and design an efficient method for the weighted CSC problem in maximization step. The crux is to speed up the convolution in the frequency domain while keeping the other computation involving weight matrix in the spatial domain. Besides, we simultaneously update the dictionary and codes by nonconvex accelerated proximal gradient algorithm without bringing in extra alternating loops. The resultant method obtains comparable time and space complexity compared with existing CSC methods. Extensive experiments on synthetic and real noisy biomedical data sets validate that our method can model noise effectively and obtain high-quality filters and representation.
Tensor data often suffer from missing value problem due to the complex high-dimensional structure while acquiring them. To complete the missing information, lots of Low-Rank Tensor Completion (LRTC) methods have been proposed, most of which depend on the low-rank property of tensor data. In this way, the low-rank component of the original data could be recovered roughly. However, the shortcoming is that the detail information can not be fully restored, no matter the Sum of the Nuclear Norm (SNN) nor the Tensor Nuclear Norm (TNN) based methods. On the contrary, in the field of signal processing, Convolutional Sparse Coding (CSC) can provide a good representation of the high-frequency component of the image, which is generally associated with the detail component of the data. Nevertheless, CSC can not handle the low-frequency component well. To this end, we propose two novel methods, LRTC-CSC-I and LRTC-CSC-II, which adopt CSC as a supplementary regularization for LRTC to capture the high-frequency components. Therefore, the LRTC-CSC methods can not only solve the missing value problem but also recover the details. Moreover, the regularizer CSC can be trained with small samples due to the sparsity characteristic. Extensive experiments show the effectiveness of LRTC-CSC methods, and quantitative evaluation indicates that the performance of our models are superior to state-of-the-art methods.
Discrete spatial patterns and their continuous transformations are two important regularities contained in natural signals. Lie groups and representation theory are mathematical tools that have been used in previous works to model continuous image transformations. On the other hand, sparse coding is an important tool for learning dictionaries of patterns in natural signals. In this paper, we combine these ideas in a Bayesian generative model that learns to disentangle spatial patterns and their continuous transformations in a completely unsupervised manner. Images are modeled as a sparse superposition of shape components followed by a transformation that is parameterized by n continuous variables. The shape components and transformations are not predefined, but are instead adapted to learn the symmetries in the data, with the constraint that the transformations form a representation of an n-dimensional torus. Training the model on a dataset consisting of controlled geometric transformations of specific MNIST digits shows that it can recover these transformations along with the digits. Training on the full MNIST dataset shows that it can learn both the basic digit shapes and the natural transformations such as shearing and stretching that are contained in this data.
Sparse coding refers to the pursuit of the sparsest representation of a signal in a typically overcomplete dictionary. From a Bayesian perspective, sparse coding provides a Maximum a Posteriori (MAP) estimate of the unknown vector under a sparse prior. In this work, we suggest enhancing the performance of sparse coding algorithms by a deliberate and controlled contamination of the input with random noise, a phenomenon known as stochastic resonance. The proposed method adds controlled noise to the input and estimates a sparse representation from the perturbed signal. A set of such solutions is then obtained by projecting the original input signal onto the recovered set of supports. We present two variants of the described method, which differ in their final step. The first is a provably convergent approximation to the Minimum Mean Square Error (MMSE) estimator, relying on the generative model and applying a weighted average over the recovered solutions. The second is a relaxed variant of the former that simply applies an empirical mean. We show that both methods provide a computationally efficient approximation to the MMSE estimator, which is typically intractable to compute. We demonstrate our findings empirically and provide a theoretical analysis of our method under several different cases.