No Arabic abstract
In typical sensor networks, data collection and processing are separated. A sink collects data from all nodes sequentially, which is very time consuming. Over-the-air computation, as a new diagram of sensor networks, integrates data collection and processing in one slot: all nodes transmit their signals simultaneously in the analog wave and the processing is done in the air. This method, although efficient, requires that signals from all nodes arrive at the sink, aligned in signal magnitude so as to enable an unbiased estimation. For nodes far away from the sink with a low channel gain, misalignment in signal magnitude is unavoidable. To solve this problem, in this paper, we investigate the amplify-and-forward based relay, in which a relay node amplifies signals from many nodes at the same time. We first discuss the general relay model and a simple relay policy. Then, a coherent relay policy is proposed to reduce relay transmission power. Directly minimizing the computation error tends to over-increase node transmission power. Therefore, the two relay policies are further refined with a new metric, and the transmission power is reduced while the computation error is kept low. In addition, the coherent relay policy helps to reduce the relay transmission power by half, to below the limit, which makes it one step ahead towards practical applications.
This paper proposes a virtual harvest-transmit model and a harvest-transmit-store model for amplify-and-forward full-duplex relay (FDR) networks with power splitting-based simultaneous wireless information and power transfer. The relay node employs a battery group consisting of two rechargeable batteries. By switching periodically between two batteries for charging and discharging in two consecutive time slots of each transmission block, all the harvested energy in each block has been applied for full duplex transmission in the virtual harvest-transmit model. By employing energy scheduling, the relay node switches among the harvesting, relaying, harvesting-relaying, and idle behaviors at a block level, so that a part of the harvested energy in a block can be scheduled for future usage in the harvest-transmit-store model. A greedy switching policy is designed to implement the harvest-transmit-store model, where the FDR node transmits when its residual energy ensures decoding at the destination. Numerical results verify the outage performance of the proposed schemes.
Over-the-air computation (AirComp) has been recognized as a low-latency solution for wireless sensor data fusion, where multiple sensors send their measurement signals to a receiver simultaneously for computation. Most existing work only considered performing AirComp over a single frequency channel. However, for a sensor network with a massive number of nodes, a single frequency channel may not be sufficient to accommodate the large number of sensors, and the AirComp performance will be very limited. So it is highly desirable to have more frequency channels for large-scale AirComp systems to benefit from multi-channel diversity. In this letter, we propose an $M$-frequency AirComp system, where each sensor selects a subset of the $M$ frequencies and broadcasts its signal over these channels under a certain power constraint. We derive the optimal sensors transmission and receivers signal processing methods separately, and develop an algorithm for joint design to achieve the best AirComp performance. Numerical results show that increasing one frequency channel can improve the AirComp performance by threefold compared to the single-frequency case.
IoT systems typically involve separate data collection and processing, and the former faces the scalability issue when the number of nodes increases. For some tasks, only the result of data fusion is needed. Then, the whole process can be realized in an efficient way, integrating the data collection and fusion in one step by over-the-air computation (AirComp). Its shortcoming, however, is signal distortion when channel gains of nodes are different, which cannot be well solved by transmission power control alone in times of deep fading. To address this issue, in this paper, we propose a multi-slot over-the-air computation (MS-AirComp) framework for the sum estimation in fading channels. Compared with conventional data collection (one slot for each node) and AirComp (one slot for all nodes), MS-AirComp is an alternative policy that lies between them, exploiting multiple slots to improve channel gains so as to facilitate power control. Specifically, the transmissions are distributed over multiple slots and a threshold of channel gain is set for distributed transmission scheduling. Each node transmits its signal only once, in the slot when its channel gain first gets above the threshold, or in the last slot when its channel gain remains below the threshold. Theoretical analysis gives the closed-form of the computation error in fading channels, based on which the optimal parameters are found. Noticing that computation error tends to be reduced at the cost of more transmission power, a method is suggested to control the increase of transmission power. Simulations confirm that the proposed method can effectively reduce computation error, compared with state-of-the-art methods.
The IEEE 802.1 time-sensitive networking (TSN) standards aim at improving the real-time capabilities of standard Ethernet. TSN is widely recognized as the long-term replacement of proprietary technologies for industrial control systems. However, wired connectivity alone is not sufficient to meet the requirements of future industrial systems. The fifth-generation (5G) mobile/cellular technology has been designed with native support for ultra-reliable low-latency communication (uRLLC). 5G is promising to meet the stringent requirements of industrial systems in the wireless domain. Converged operation of 5G and TSN systems is crucial for achieving end-to-end deterministic connectivity in industrial networks. Accurate time synchronization is key to integrated operation of 5G and TSN systems. To this end, this paper evaluates the performance of over-the-air time synchronization mechanism which has been proposed in 3GPP Release 16. We analyze the accuracy of time synchronization through the boundary clock approach in the presence of clock drift and different air-interface timing errors related to reference time indication. We also investigate frequency and scalability aspects of over-the-air time synchronization. Our performance evaluation reveals the conditions under which 1 (mu)s or below requirement for TSN time synchronization can be achieved.
In this paper, we propose an optimal relay power allocation of an Amplify-and-Forward relay networks with non-linear power amplifiers. Based on Bussgang Linearization Theory, we depict the non-linear amplifying process into a linear system, which lets analyzing system performance easier. To obtain spatial diversity, we design a complete practical framework of a non-linear distortion aware receiver. Consider a total relay power constraint, we propose an optimal power allocation scheme to maximum the receiver signal-to-noise ratio. Simulation results show that proposed optimal relay power allocation indeed can improve the system capacity and resist the non-linear distortion. It is also verified that the proposed transmission scheme outperforms other transmission schemes without considering non-linear distortion.