No Arabic abstract
Over-the-air computation (AirComp) has been recognized as a low-latency solution for wireless sensor data fusion, where multiple sensors send their measurement signals to a receiver simultaneously for computation. Most existing work only considered performing AirComp over a single frequency channel. However, for a sensor network with a massive number of nodes, a single frequency channel may not be sufficient to accommodate the large number of sensors, and the AirComp performance will be very limited. So it is highly desirable to have more frequency channels for large-scale AirComp systems to benefit from multi-channel diversity. In this letter, we propose an $M$-frequency AirComp system, where each sensor selects a subset of the $M$ frequencies and broadcasts its signal over these channels under a certain power constraint. We derive the optimal sensors transmission and receivers signal processing methods separately, and develop an algorithm for joint design to achieve the best AirComp performance. Numerical results show that increasing one frequency channel can improve the AirComp performance by threefold compared to the single-frequency case.
Federated learning (FL) as a promising edge-learning framework can effectively address the latency and privacy issues by featuring distributed learning at the devices and model aggregation in the central server. In order to enable efficient wireless data aggregation, over-the-air computation (AirComp) has recently been proposed and attracted immediate attention. However, fading of wireless channels can produce aggregate distortions in an AirComp-based FL scheme. To combat this effect, the concept of dynamic learning rate (DLR) is proposed in this work. We begin our discussion by considering multiple-input-single-output (MISO) scenario, since the underlying optimization problem is convex and has closed-form solution. We then extend our studies to more general multiple-input-multiple-output (MIMO) case and an iterative method is derived. Extensive simulation results demonstrate the effectiveness of the proposed scheme in reducing the aggregate distortion and guaranteeing the testing accuracy using the MNIST and CIFAR10 datasets. In addition, we present the asymptotic analysis and give a near-optimal receive beamforming design solution in closed form, which is verified by numerical simulations.
Over-the-air computation (AirComp) is a disruptive technique for fast wireless data aggregation in Internet of Things (IoT) networks via exploiting the waveform superposition property of multiple-access channels. However, the performance of AirComp is bottlenecked by the worst channel condition among all links between the IoT devices and the access point. In this paper, a reconfigurable intelligent surface (RIS) assisted AirComp system is proposed to boost the received signal power and thus mitigate the performance bottleneck by reconfiguring the propagation channels. With an objective to minimize the AirComp distortion, we propose a joint design of AirComp transceivers and RIS phase-shifts, which however turns out to be a highly intractable non-convex programming problem. To this end, we develop a novel alternating minimization framework in conjunction with the successive convex approximation technique, which is proved to converge monotonically. To reduce the computational complexity, we transform the subproblem in each alternation as a smooth convex-concave saddle point problem, which is then tackled by proposing a Mirror-Prox method that only involves a sequence of closed-form updates. Simulations show that the computation time of the proposed algorithm can be two orders of magnitude smaller than that of the state-of-the-art algorithms, while achieving a similar distortion performance.
Over-the-air federated edge learning (Air-FEEL) is a communication-efficient solution for privacy-preserving distributed learning over wireless networks. Air-FEEL allows one-shot over-the-air aggregation of gradient/model-updates by exploiting the waveform superposition property of wireless channels, and thus promises an extremely low aggregation latency that is independent of the network size. However, such communication efficiency may come at a cost of learning performance degradation due to the aggregation error caused by the non-uniform channel fading over devices and noise perturbation. Prior work adopted channel inversion power control (or its variants) to reduce the aggregation error by aligning the channel gains, which, however, could be highly suboptimal in deep fading scenarios due to the noise amplification. To overcome this issue, we investigate the power control optimization for enhancing the learning performance of Air-FEEL. Towards this end, we first analyze the convergence behavior of the Air-FEEL by deriving the optimality gap of the loss-function under any given power control policy. Then we optimize the power control to minimize the optimality gap for accelerating convergence, subject to a set of average and maximum power constraints at edge devices. The problem is generally non-convex and challenging to solve due to the coupling of power control variables over different devices and iterations. To tackle this challenge, we develop an efficient algorithm by jointly exploiting the successive convex approximation (SCA) and trust region methods. Numerical results show that the optimized power control policy achieves significantly faster convergence than the benchmark policies such as channel inversion and uniform power transmission.
Wireless connectivity creates a computing paradigm that merges communication and inference. A basic operation in this paradigm is the one where a device offloads classification tasks to the edge servers. We term this remote classification, with a potential to enable intelligent applications. Remote classification is challenged by the finite and variable data rate of the wireless channel, which affects the capability to transfer high-dimensional features and thus limits the classification resolution. We introduce a set of metrics under the name of classification capacity that are defined as the maximum number of classes that can be discerned over a given communication channel while meeting a target classification error probability. The objective is to choose a subset of classes from a library that offers satisfactory performance over a given channel. We treat two cases of subset selection. First, a device can select the subset by pruning the class library until arriving at a subset that meets the targeted error probability while maximizing the classification capacity. Adopting a subspace data model, we prove the equivalence of classification capacity maximization to Grassmannian packing. The results show that the classification capacity grows exponentially with the instantaneous communication rate, and super-exponentially with the dimensions of each data cluster. This also holds for ergodic and outage capacities with fading if the instantaneous rate is replaced with an average rate and a fixed rate, respectively. In the second case, a device has a preference of class subset for every communication rate, which is modeled as an instance of uniformly sampling the library. Without class selection, the classification capacity and its ergodic and outage counterparts are proved to scale linearly with their corresponding communication rates instead of the exponential growth in the last case.
This paper investigates the transmission power control in over-the-air federated edge learning (Air-FEEL) system. Different from conventional power control designs (e.g., to minimize the individual mean squared error (MSE) of the over-the-air aggregation at each round), we consider a new power control design aiming at directly maximizing the convergence speed. Towards this end, we first analyze the convergence behavior of Air-FEEL (in terms of the optimality gap) subject to aggregation errors at different communication rounds. It is revealed that if the aggregation estimates are unbiased, then the training algorithm would converge exactly to the optimal point with mild conditions; while if they are biased, then the algorithm would converge with an error floor determined by the accumulated estimate bias over communication rounds. Next, building upon the convergence results, we optimize the power control to directly minimize the derived optimality gaps under both biased and unbiased aggregations, subject to a set of average and maximum power constraints at individual edge devices. We transform both problems into convex forms, and obtain their structured optimal solutions, both appearing in a form of regularized channel inversion, by using the Lagrangian duality method. Finally, numerical results show that the proposed power control policies achieve significantly faster convergence for Air-FEEL, as compared with benchmark policies with fixed power transmission or conventional MSE minimization.