Do you want to publish a course? Click here

Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension

63   0   0.0 ( 0 )
 Added by Karsten Jedamzik
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The mismatch between the locally measured expansion rate of the universe and the one inferred from the cosmic microwave background measurements by Planck in the context of the standard $Lambda$CDM, known as the Hubble tension, has become one of the most pressing problems in cosmology. A large number of amendments to the $Lambda$CDM model have been proposed in order to solve this tension. Many of them introduce new physics, such as early dark energy, modifications of the standard model neutrino sector, extra radiation, primordial magnetic fields or varying fundamental constants, with the aim of reducing the sound horizon at recombination $r_{star}$. We demonstrate here that any model which only reduces $r_{star}$ can never fully resolve the Hubble tension while remaining consistent with other cosmological datasets. We show explicitly that models which achieve a higher Hubble constant with lower values of matter density $Omega_m h^2$ run into tension with the observations of baryon acoustic oscillations, while models with larger $Omega_mh^2$ develop tension with galaxy weak lensing data.



rate research

Read More

Small-scale inhomogeneities in the baryon density around recombination have been proposed as a solution to the tension between local and global determinations of the Hubble constant. These baryon clumping models make distinct predictions for the cosmic microwave background anisotropy power spectra on small angular scales. We use recent data from the Atacama Cosmology Telescope to test these predictions. No evidence for baryon clumping is found, assuming a range of parameterizations for time-independent baryon density probability distribution functions. The inferred Hubble constant remains in significant tension with the SH0ES measurement.
We perform a comprehensive study of cosmological constraints on non-standard neutrino self-interactions using cosmic microwave background (CMB) and baryon acoustic oscillation data. We consider different scenarios for neutrino self-interactions distinguished by the fraction of neutrino states allowed to participate in self-interactions and how the relativistic energy density, N$_{textrm{eff}}$, is allowed to vary. Specifically, we study cases in which: all neutrino states self-interact and N$_{textrm{eff}}$ varies; two species free-stream, which we show alleviates tension with laboratory constraints, while the energy in the additional interacting states varies; and a variable fraction of neutrinos self-interact with either the total N$_{textrm{eff}}$ fixed to the Standard Model value or allowed to vary. In no case do we find compelling evidence for new neutrino interactions or non-standard values of N$_{textrm{eff}}$. In several cases we find additional modes with neutrino decoupling occurring at lower redshifts $z_{textrm{dec}} sim 10^{3-4}$. We do a careful analysis to examine whether new neutrino self-interactions solve or alleviate the so-called $H_0$ tension and find that, when all Planck 2018 CMB temperature and polarization data is included, none of these examples ease the tension more than allowing a variable N$_{textrm{eff}}$ comprised of free-streaming particles. Although we focus on neutrino interactions, these constraints are applicable to any light relic particle.
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in portion the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the $4.4sigma$ tension between the Planck estimate of the Hubble constant $H_0$ and the SH0ES collaboration measurements. After showing the $H_0$ evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting new physics models that could solve this tension and discuss how the next decade experiments will be crucial.
Two sources of geometric information are encoded in the galaxy power spectrum: the sound horizon at recombination and the horizon at matter-radiation equality. Analyzing the BOSS DR12 galaxy power spectra using perturbation theory with $Omega_m$ priors from Pantheon supernovae but no priors on $Omega_b$, we obtain constraints on $H_0$ from the second scale, finding $H_0 = 65.1^{+3.0}_{-5.4},mathrm{km},mathrm{s}^{-1}mathrm{Mpc}^{-1}$; this differs from the best-fit of SH0ES at 95% confidence. Similar results are obtained if $Omega_m$ is constrained from uncalibrated BAO: $H_0 = 65.6^{+3.4}_{-5.5},mathrm{km},mathrm{s}^{-1}mathrm{Mpc}^{-1}$. Adding the analogous lensing results from Baxter & Sherwin 2020, the posterior shifts to $70.6^{+3.7}_{-5.0},mathrm{km},mathrm{s}^{-1}mathrm{Mpc}^{-1}$. Using mock data, Fisher analyses, and scale-cuts, we demonstrate that our constraints do not receive significant information from the sound horizon scale. Since many models resolve the $H_0$ controversy by adding new physics to alter the sound horizon, our measurements are a consistency test for standard cosmology before recombination. A simple forecast indicates that such constraints could reach $sigma_{H_0} simeq 1.6,mathrm{km},mathrm{s}^{-1}mathrm{Mpc}^{-1}$ in the era of Euclid.
Local measurements of the Hubble parameter are increasingly in tension with the value inferred from a $Lambda$CDM fit to the cosmic microwave background (CMB) data. In this paper, we construct scenarios in which evolving scalar fields significantly ease this tension by adding energy to the Universe around recombination in a narrow redshift window. We identify solutions of $V propto phi^{2 n}$ with simple asymptotic behavior, both oscillatory (rocking) and rolling. These are the first solutions of this kind in which the field evolution and fluctuations are consistently implemented using the equations of motion. Our findings differ qualitatively from those of the existing literature, which rely upon a coarse-grained fluid description. Combining CMB data with low-redshift measurements, the best fit model has $n=2$ and increases the allowed value of $H_0$ from 69.2 km/s/Mpc in $Lambda$CDM to 72.3 km/s/Mpc at $2sigma$. Future measurements of the late-time amplitude of matter fluctuations and of the reionization history could help distinguish these models from competing solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا