Do you want to publish a course? Click here

Determining the Hubble Constant without the Sound Horizon: Measurements from Galaxy Surveys

132   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two sources of geometric information are encoded in the galaxy power spectrum: the sound horizon at recombination and the horizon at matter-radiation equality. Analyzing the BOSS DR12 galaxy power spectra using perturbation theory with $Omega_m$ priors from Pantheon supernovae but no priors on $Omega_b$, we obtain constraints on $H_0$ from the second scale, finding $H_0 = 65.1^{+3.0}_{-5.4},mathrm{km},mathrm{s}^{-1}mathrm{Mpc}^{-1}$; this differs from the best-fit of SH0ES at 95% confidence. Similar results are obtained if $Omega_m$ is constrained from uncalibrated BAO: $H_0 = 65.6^{+3.4}_{-5.5},mathrm{km},mathrm{s}^{-1}mathrm{Mpc}^{-1}$. Adding the analogous lensing results from Baxter & Sherwin 2020, the posterior shifts to $70.6^{+3.7}_{-5.0},mathrm{km},mathrm{s}^{-1}mathrm{Mpc}^{-1}$. Using mock data, Fisher analyses, and scale-cuts, we demonstrate that our constraints do not receive significant information from the sound horizon scale. Since many models resolve the $H_0$ controversy by adding new physics to alter the sound horizon, our measurements are a consistency test for standard cosmology before recombination. A simple forecast indicates that such constraints could reach $sigma_{H_0} simeq 1.6,mathrm{km},mathrm{s}^{-1}mathrm{Mpc}^{-1}$ in the era of Euclid.



rate research

Read More

237 - Rupert A.C. Croft 2020
We investigate the possibility that a statistical detection of the galaxy parallax shift due to the Earths motion with respect to the CMB frame (cosmic secular parallax) could be made by the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) or by the Nancy Grace Roman Space Telescope (NGRST), and used to measure the Hubble constant. We make mock galaxy surveys which extend to redshift z=0.06 from a large N-body simulation, and include astrometric errors from the LSST and NGRST science requirements, redshift errors and peculiar velocities. We include spectroscopic redshifts for the brightest galaxies (r < 18) in the fiducial case. We use these catalogues to make measurements of parallax versus redshift,for various assumed survey parameters and analysis techniques. We find that in order to make a competitive measurement it will be necessary to model and correct for the peculiar velocity component of galaxy proper motions. It will also be necessary to push astrometry of extended sources into a new regime, and combine information from the different elements of resolved galaxies. In an appendix we describe some simple tests of galaxy image registration which yield relatively promising results. For our fiducial survey parameters, we predict an rms error on the direct geometrical measurement of H0 of 2.8% for LSST and 0.8% for NGRST.
132 - Tao Yang , Simon Birrer , Bin Hu 2020
Strong gravitational lensing has been a powerful probe of cosmological models and gravity. To date, constraints in either domain have been obtained separately. We propose a new methodology through which the cosmological model, specifically the Hubble constant, and post-Newtonian parameter can be simultaneously constrained. Using the time-delay cosmography from strong lensing combined with the stellar kinematics of the deflector lens, we demonstrate the Hubble constant and post-Newtonian parameter are incorporated in two distance ratios which reflect the lensing mass and dynamical mass, respectively. Through the reanalysis of the four publicly released lenses distance posteriors from the H0LiCOW collaboration, the simultaneous constraints of Hubble constant and post-Newtonian parameter are obtained. Our results suggests no deviation from the General Relativity, $gamma_{texttt{PPN}}=0.87^{+0.19}_{-0.17}$ with a Hubble constant favors the local Universe value, $H_0=73.65^{+1.95}_{-2.26}$ km s$^{-1}$ Mpc$^{-1}$. Finally, we forecast the robustness of gravity tests by using the time-delay strong lensing for constraints we expect in the next few years. We find that the joint constraint from 40 lenses are able to reach the order of $7.7%$ for the post-Newtonian parameter and $1.4%$ for Hubble constant.
We perform a measurement of the Hubble constant, $H_0$, using the latest baryonic acoustic oscillations (BAO) measurements from galaxy surveys of 6dFGS, SDSS DR7 Main Galaxy Sample, BOSS DR12 sample, and eBOSS DR14 quasar sample, in the framework of a flat $Lambda$CDM model. Based on the Kullback-Leibler (KL) divergence, we examine the consistency of $H_0$ values derived from various data sets. We find that our measurement is consistent with that derived from Planck and with the local measurement of $H_0$ using the Cepheids and type Ia supernovae. We perform forecasts on $H_0$ from future BAO measurements, and find that the uncertainty of $H_0$ determined by future BAO data alone, including complete eBOSS, DESI and Euclid-like, is comparable with that from local measurements.
In this work we investigate the systematic uncertainties that arise from the calculation of the peculiar velocity when estimating the Hubble constant ($H_0$) from gravitational wave standard sirens. We study the GW170817 event and the estimation of the peculiar velocity of its host galaxy, NGC 4993, when using Gaussian smoothing over nearby galaxies. NGC 4993 being a relatively nearby galaxy, at $sim 40 {rm Mpc}$ away, is subject to a significant effect of peculiar velocities. We demonstrate a direct dependence of the estimated peculiar velocity value on the choice of smoothing scale. We show that when not accounting for this systematic, a bias of $sim 200 {rm km s ^{-1}}$ in the peculiar velocity incurs a bias of $sim 4 {rm km s ^{-1} Mpc^{-1}}$ on the Hubble constant. We formulate a Bayesian model that accounts for the dependence of the peculiar velocity on the smoothing scale and by marginalising over this parameter we remove the need for a choice of smoothing scale. The proposed model yields $H_0 = 68.6 ^{+14.0}_{-8.5}~{rm km s^{-1} Mpc^{-1}}$. We demonstrate that under this model a more robust unbiased estimate of the Hubble constant from nearby GW sources is obtained.
The accuracy of the Hubble constant measured with extragalactic Cepheids depends on robust photometry and background estimation in the presence of stellar crowding. The conventional approach accounts for crowding by sampling backgrounds near Cepheids and assuming they match those at their positions. We show a direct consequence of crowding by unresolved sources at Cepheid sites is a reduction in the fractional amplitudes of their light curves. We use a simple analytical expression to infer crowding directly from the light curve amplitudes of >200 Cepheids in 3 SNe~Ia hosts and NGC 4258 as observed by HST -- the first near-infrared amplitudes measured beyond the Magellanic Clouds. Where local crowding is minimal, we find near-infrared amplitudes match Milky Way Cepheids at the same periods. At greater stellar densities we find that the empirically measured amplitudes match the values predicted (with no free parameters) from crowding assessed in the conventional way from local regions, confirming their accuracy for estimating the background at the Cepheid locations. Extragalactic Cepheid amplitudes would need to be ~20% smaller than measured to indicate additional, unrecognized crowding as a primary source of the present discrepancy in H_0. Rather we find the amplitude data constrains a systematic mis-estimate of Cepheid backgrounds to be 0.029 +/- 0.037 mag, more than 5x smaller than the size of the present ~0.2 mag tension in H_0. We conclude that systematic errors in Cepheid backgrounds do not provide a plausible resolution to the Hubble tension.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا