Small-scale inhomogeneities in the baryon density around recombination have been proposed as a solution to the tension between local and global determinations of the Hubble constant. These baryon clumping models make distinct predictions for the cosmic microwave background anisotropy power spectra on small angular scales. We use recent data from the Atacama Cosmology Telescope to test these predictions. No evidence for baryon clumping is found, assuming a range of parameterizations for time-independent baryon density probability distribution functions. The inferred Hubble constant remains in significant tension with the SH0ES measurement.
The mismatch between the locally measured expansion rate of the universe and the one inferred from the cosmic microwave background measurements by Planck in the context of the standard $Lambda$CDM, known as the Hubble tension, has become one of the most pressing problems in cosmology. A large number of amendments to the $Lambda$CDM model have been proposed in order to solve this tension. Many of them introduce new physics, such as early dark energy, modifications of the standard model neutrino sector, extra radiation, primordial magnetic fields or varying fundamental constants, with the aim of reducing the sound horizon at recombination $r_{star}$. We demonstrate here that any model which only reduces $r_{star}$ can never fully resolve the Hubble tension while remaining consistent with other cosmological datasets. We show explicitly that models which achieve a higher Hubble constant with lower values of matter density $Omega_m h^2$ run into tension with the observations of baryon acoustic oscillations, while models with larger $Omega_mh^2$ develop tension with galaxy weak lensing data.
Despite the success of the standard $Lambda$CDM model of cosmology, recent data improvements have made tensions emerge between low- and high-redshift observables, most importantly in determinations of the Hubble constant $H_0$ and the (rescaled) clustering amplitude $S_8$. The high-redshift data, from the cosmic microwave background (CMB), crucially relies on recombination physics for its interpretation. Here we study how small-scale baryon inhomogeneities (i.e., clumping) can affect recombination and consider whether they can relieve both the $H_0$ and $S_8$ tensions. Such small-scale clumping, which may be caused by primordial magnetic fields or baryon isocurvature below kpc scales, enhances the recombination rate even when averaged over larger scales, shifting recombination to earlier times. We introduce a flexible clumping model, parametrized via three spatial zones with free densities and volume fractions, and use it to study the impact of clumping on CMB observables. We find that increasing $H_0$ decreases both $Omega_m$ and $S_8$, which alleviates the $S_8$ tension. On the other hand, the shift in $Omega_m$ is disfavored by the low-$z$ baryon-acoustic-oscillations measurements. We find that the clumping parameters that can change the CMB sound horizon enough to explain the $H_0$ tension also alter the damping tail, so they are disfavored by current {it Planck} 2018 data. We test how the CMB damping-tail information rules out changes to recombination by first removing $ell>1000$ multipoles in {it Planck} data, where we find that clumping could resolve the $H_0$ tension. Furthermore, we make predictions for future CMB experiments, as their improved damping-tail precision can better constrain departures from standard recombination. Both the {it Simons Observatory} and CMB-S4 will provide decisive evidence for or against clumping as a resolution to the $H_0$ tension.
In order to infer the impact of the small-scale physics to the large-scale properties of the universe, we use a series of cosmological $N$-body simulations of self-gravitating matter inhomogeneities to measure, for the first time, the response function of such a system defined as a functional derivative of the nonlinear power spectrum with respect to its linear counterpart. Its measured shape and amplitude are found to be in good agreement with perturbation theory predictions except for the coupling from small to large-scale perturbations. The latter is found to be significantly damped, following a Lorentzian form. These results shed light on validity regime of perturbation theory calculations giving a useful guideline for regularization of small scale effects in analytical modeling. Most importantly our result indicates that the statistical properties of the large-scale structure of the universe are remarkably insensitive to the details of the small-scale physics, astrophysical or gravitational, paving the way for the derivation of robust estimates of theoretical uncertainties on the determination of cosmological parameters from large-scale survey observations.
We investigate the effect of small scale inhomogeneities on standard candle observations, such as type Ia supernovae (SNe) observations. Existence of the small scale inhomogeneities may cause a tension between SNe observations and other observations with larger diameter sources, such as the cosmic microwave background (CMB) observation. To clarify the impact of the small scale inhomogeneities, we use the Dyer-Roeder approach. We determined the smoothness parameter $alpha(z)$ as a function of the redshift $z$ so as to compensate the deviation of cosmological parameters for SNe from those for CMB. The range of the deviation which can be compensated by the smoothness parameter $alpha(z)$ satisfying $0leqalpha(z)leq1$ is reported. Our result suggests that the tension may give us the information of the small scale inhomogeneities through the smoothness parameter.
It has recently been shown that a subdominant hidden sector of atomic dark matter in the early universe can resolve the Hubble tension while maintaining good agreement with most precision cosmological observables. However, such a solution requires a hidden sector whose energy density ratios are the same as in our sector and whose recombination also takes place at redshift $z approx 1100$, which presents an apparent fine tuning. We introduce a realistic model of this scenario that dynamically enforces these coincidences without fine tuning. In our setup, the hidden sector contains an identical copy of Standard Model (SM) fields, but has a smaller Higgs vacuum expectation value (VEV) and a lower temperature. The baryon asymmetries and reheat temperatures in both sectors arise from the decays of an Affleck-Dine scalar field, whose branching ratios automatically ensure that the reheat temperature in each sector is proportional to the corresponding Higgs VEV. The same setup also naturally ensures that the Hydrogen binding energy in each sector is proportional to the corresponding VEV, so the ratios of binding energy to temperature are approximately equal in the two sectors. Furthermore, our scenario predicts a correlation between the SM/hidden temperature ratio and the atomic dark matter abundance and automatically yields values for these quantities that resolve the Hubble tension.