Do you want to publish a course? Click here

Generic Properties of Koopman Eigenfunctions for Stable Fixed Points and Periodic Orbits

176   0   0.0 ( 0 )
 Added by Matthew Kvalheim
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Our recent work established existence and uniqueness results for $mathcal{C}^{k,alpha}_{text{loc}}$ globally defined linearizing semiconjugacies for $mathcal{C}^1$ flows having a globally attracting hyperbolic fixed point or periodic orbit (Kvalheim and Revzen, 2019). Applications include (i) improvements, such as uniqueness statements, for the Sternberg linearization and Floquet normal form theorems; (ii) results concerning the existence, uniqueness, classification, and convergence of various quantities appearing in the applied Koopmanism literature, such as principal eigenfunctions, isostables, and Laplace averages. In this work we give an exposition of some of these results, with an emphasis on the Koopmanism applications, and consider their broadness of applicability. In particular we show that, for almost all $mathcal{C}^infty$ flows having a globally attracting hyperbolic fixed point or periodic orbit, the $mathcal{C}^infty$ Koopman eigenfunctions can be completely classified, generalizing a result known for analytic systems. For such systems, every $mathcal{C}^infty$ eigenfunction is uniquely determined by its eigenvalue modulo scalar multiplication.



rate research

Read More

72 - Hiroki Takahasi 2020
For an infinitely renormalizable negative Schwarzian unimodal map $f$ with non-flat critical point, we analyze statistical properties of periodic points as the periods tend to infinity. Introducing a weight function $varphi$ which is a continuous or a geometric potential $varphi=-betalog|f|$ ($betainmathbb R$), we establish the level-2 Large Deviation Principle for weighted periodic points. From this, we deduce that all weighted periodic points equidistribute with respect to equilibrium states for the potential $varphi$. In particular, it follows that all periodic points are equidistributed with respect to measures of maximal entropy, and all periodic points weighted with their Lyapunov exponents are equidistributed with respect to the post-critical measure supported on the attracting Cantor set.
Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we will argue that the use of the Koopman operator and its spectrum is particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven algorithm developments. We believe, and document through illustrative examples, that this can nontrivially extend the use and applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards what can be considered as a systematic discovery of Cole-Hopf-type transformations for dynamics.
We present a new framework for optimal and feedback control of PDEs using Koopman operator-based reduced order models (K-ROMs). The Koopman operator is a linear but infinite-dimensional operator which describes the dynamics of observables. A numerical approximation of the Koopman operator therefore yields a linear system for the observation of an autonomous dynamical system. In our approach, by introducing a finite number of constant controls, the dynamic control system is transformed into a set of autonomous systems and the corresponding optimal control problem into a switching time optimization problem. This allows us to replace each of these systems by a K-ROM which can be solved orders of magnitude faster. By this approach, a nonlinear infinite-dimensional control problem is transformed into a low-dimensional linear problem. In situations where the Koopman operator can be computed exactly using Extended Dynamic Mode Decomposition (EDMD), the proposed approach yields optimal control inputs. Furthermore, a recent convergence result for EDMD suggests that the approach can be applied to more complex dynamics as well. To illustrate the results, we consider the 1D Burgers equation and the 2D Navier--Stokes equations. The numerical experiments show remarkable performance concerning both solution times and accuracy.
119 - D.J.W. Simpson 2019
The collision of a fixed point with a switching manifold (or border) in a piecewise-smooth map can create many different types of invariant sets. This paper explores two techniques that, combined, establish a chaotic attractor is created in a border-collision bifurcation in $mathbb{R}^d$ $(d ge 1)$. First, asymptotic stability of the fixed point at the bifurcation is characterised and shown to imply a local attractor is created. Second, a lower bound on the maximal Lyapunov exponent is obtained from the determinants of the one-sided Jacobian matrices associated with the fixed point. Special care is taken to accommodate points whose forward orbits intersect the switching manifold as such intersections can have a stabilising effect. The results are applied to the two-dimensional border-collision normal form focusing on parameter values for which the map is piecewise area-expanding.
We establish connections between several properties of topological dynamical systems, such as: - every point is generic for an ergodic measure, - the map sending points to the measures they generate is continuous, - the system splits into uniquely (alternatively, strictly) ergodic subsystems, - the map sending ergodic measures to their topological supports is continuous, - the Cesaro means of every continuous function converge uniformly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا