Do you want to publish a course? Click here

Koopman operator-based model reduction for switched-system control of PDEs

98   0   0.0 ( 0 )
 Added by Sebastian Peitz
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present a new framework for optimal and feedback control of PDEs using Koopman operator-based reduced order models (K-ROMs). The Koopman operator is a linear but infinite-dimensional operator which describes the dynamics of observables. A numerical approximation of the Koopman operator therefore yields a linear system for the observation of an autonomous dynamical system. In our approach, by introducing a finite number of constant controls, the dynamic control system is transformed into a set of autonomous systems and the corresponding optimal control problem into a switching time optimization problem. This allows us to replace each of these systems by a K-ROM which can be solved orders of magnitude faster. By this approach, a nonlinear infinite-dimensional control problem is transformed into a low-dimensional linear problem. In situations where the Koopman operator can be computed exactly using Extended Dynamic Mode Decomposition (EDMD), the proposed approach yields optimal control inputs. Furthermore, a recent convergence result for EDMD suggests that the approach can be applied to more complex dynamics as well. To illustrate the results, we consider the 1D Burgers equation and the 2D Navier--Stokes equations. The numerical experiments show remarkable performance concerning both solution times and accuracy.



rate research

Read More

In the development of model predictive controllers for PDE-constrained problems, the use of reduced order models is essential to enable real-time applicability. Besides local linearization approaches, Proper Orthogonal Decomposition (POD) has been most widely used in the past in order to derive such models. Due to the huge advances concerning both theory as well as the numerical approximation, a very promising alternative based on the Koopman operator has recently emerged. In this chapter, we present two control strategies for model predictive control of nonlinear PDEs using data-efficient approximations of the Koopman operator. In the first one, the dynamic control system is replaced by a small number of autonomous systems with different yet constant inputs. The control problem is consequently transformed into a switching problem. In the second approach, a bilinear surrogate model, is obtained via linear interpolation between two of these autonomous systems. Using a recent convergence result for Extended Dynamic Mode Decomposition (EDMD), convergence to the true optimum can be proved. We study the properties of these two strategies with respect to solution quality, data requirements, and complexity of the resulting optimization problem using the 1D Burgers Equation and the 2D Navier-Stokes Equations as examples. Finally, an extension for online adaptivity is presented.
108 - Igor Mezic 2020
We provide a framework for learning of dynamical systems rooted in the concept of representations and Koopman operators. The interplay between the two leads to the full description of systems that can be represented linearly in a finite dimension, based on the properties of the Koopman operator spectrum. The geometry of state space is connected to the notion of representation, both in the linear case - where it is related to joint level sets of eigenfunctions - and in the nonlinear representation case. As shown here, even nonlinear finite-dimensional representations can be learned using the Koopman operator framework, leading to a new class of representation eigenproblems. The connection to learning using neural networks is given. An extension of the Koopman operator theory to static maps between different spaces is provided. The effect of the Koopman operator spectrum on Mori-Zwanzig type representations is discussed.
In many applications, and in systems/synthetic biology, in particular, it is desirable to compute control policies that force the trajectory of a bistable system from one equilibrium (the initial point) to another equilibrium (the target point), or in other words to solve the switching problem. It was recently shown that, for monotone bistable systems, this problem admits easy-to-implement open-loop solutions in terms of temporal pulses (i.e., step functions of fixed length and fixed magnitude). In this paper, we develop this idea further and formulate a problem of convergence to an equilibrium from an arbitrary initial point. We show that this problem can be solved using a static optimization problem in the case of monotone systems. Changing the initial point to an arbitrary state allows to build closed-loop, event-based or open-loop policies for the switching/convergence problems. In our derivations we exploit the Koopman operator, which offers a linear infinite-dimensional representation of an autonomous nonlinear system. One of the main advantages of using the Koopman operator is the powerful computational tools developed for this framework. Besides the presence of numerical solutions, the switching/convergence problem can also serve as a building block for solving more complicated control problems and can potentially be applied to non-monotone systems. We illustrate this argument on the problem of synchronizing cardiac cells by defibrillation. Potentially, our approach can be extended to problems with different parametrizations of control signals since the only fundamental limitation is the finite time application of the control signal.
151 - Mathias Wanner , Igor Mezic 2020
We analyze the performance of Dynamic Mode Decomposition (DMD)-based approximations of the stochastic Koopman operator for random dynamical systems where either the dynamics or observables are affected by noise. Under certain ergodicity assumptions, we show that standard DMD algorithms converge provided the observables do not contain any noise and span an invariant subspace of the stochastic Koopman operator. For observables with noise, we introduce a new, robust DMD algorithm that can approximate the stochastic Koopman operator and demonstrate how this algorithm can be applied to Krylov subspace based methods using a single observable measured over a single trajectory. We test the performance of the algorithms over several examples.
71 - Igor Mezic 2020
We study numerical approaches to computation of spectral properties of composition operators. We provide a characterization of Koopman Modes in Banach spaces using Generalized Laplace Analysis. We cast the Dynamic Mode-Decomposition type methods in the context of Finite Section theory of infinite dimensional operators, and provide an example of a mixing map for which the finite section method fails. Under assumptions on the underlying dynamics, we provide the first result on the convergence rate under sample size increase in the finite-section approximation. We study the error in the Krylov subspace version of the finite section method and prove convergence in pseudospectral sense for operators with pure point spectrum. This result indicates that Krylov sequence-based approximations can have low error without an exponential-in-dimension increase in the number of functions needed for approximation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا