Do you want to publish a course? Click here

When all points are generic for ergodic measures

89   0   0.0 ( 0 )
 Added by Tomasz Downarowicz
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We establish connections between several properties of topological dynamical systems, such as: - every point is generic for an ergodic measure, - the map sending points to the measures they generate is continuous, - the system splits into uniquely (alternatively, strictly) ergodic subsystems, - the map sending ergodic measures to their topological supports is continuous, - the Cesaro means of every continuous function converge uniformly.



rate research

Read More

126 - Nadav Dym 2016
We discuss an invertible version of Furstenbergs `Ergodic CP Shift Systems. We show that the explicit regularity of these dynamical systems with respect to magnification of measures, implies certain regularity with respect to translation of measures; We show that the translation action on measures is non-singular, and prove pointwise discrete and continuous ergodic theorems for the translation action.
For every $rinmathbb{N}_{geq 2}cup{infty}$, we show that the space of ergodic measures is path connected for $C^r$-generic Lorenz attractors while it is not connected for $C^r$-dense Lorenz attractors. Various properties of the ergodic measure space for Lorenz attractors have been showed. In particular, a $C^r$-connecting lemma ($rgeq2$) for Lorenz attractors also has been proved. In $C^1$-topology, we obtain similar properties for singular hyperbolic attractors in higher dimensions.
Recently, the dynamical and spectral properties of square-free integers, visible lattice points and various generalisations have received increased attention. One reason is the connection of one-dimensional examples such as $mathscr B$-free numbers with Sarnaks conjecture on the `randomness of the Mobius function, another the explicit computability of correlation functions as well as eigenfunctions for these systems together with intrinsic ergodicity properties. Here, we summarise some of the results, with focus on spectral and dynamical aspects, and expand a little on the implications for mathematical diffraction theory.
In this paper it is proved that if a minimal system has the property that its sequence entropy is uniformly bounded for all sequences, then it has only finitely many ergodic measures and is an almost finite to one extension of its maximal equicontinuous factor. This result is obtained as an application of a general criteria which states that if a minimal system is an almost finite to one extension of its maximal equicontinuous factor and has no infinite independent sets of length $k$ for some $kge 2$, then it has only finitely many ergodic measures.
Let ${T^t}$ be a smooth flow with positive speed and positive topological entropy on a compact smooth three dimensional manifold, and let $mu$ be an ergodic measure of maximal entropy. We show that either ${T^t}$ is Bernoulli, or ${T^t}$ is isomorphic to the product of a Bernoulli flow and a rotational flow. Applications are given to Reeb flows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا