This article presents the use of flexible metal foam substrates for the growth of III-nitride nanowire light emitters to tackle the inherent limitations of thin-film light emitting diodes as well as fabrication and application issues of traditional substrates. A dense packing of gallium nitride nanowires were grown on a nickel foam substrate. The nanowires grew predominantly along the a-plane direction, normal to the local surface of the nickel foam. Strong luminescence was observed from undoped GaN and InGaN quantum well light emitting diode nanowires.
This article presents the use of flexible carbon substrates for the growth of III-nitride nanowire light emitters. A dense packing of gallium nitride nanowires were grown on a carbon paper substrate. The nanowires grew predominantly along the a-plane direction, normal to the local surface of the carbon paper. Strong photo- and electro-luminescence was observed from InGaN quantum well light emitting diode nanowires.
Crystal growth of semiconductor nanowires from a liquid droplet depends on the stability of this droplet at the liquid-solid interface. By combining in-situ transmission electron microscopy with theoretical analysis of the surface energies involved, we show that truncation of the interface can increase the stability of the droplet, which in turn increases the range of parameters for which successful nanowire growth is possible. In addition to determining the limits of nanowire growth, this approach allows us to experimentally estimate relevant surface energies, such as the GaAs ${11bar{2}0}$ facet.
We study the role of gold droplets in the initial stage of nanowire growth via the vapor liquid solid method. Apart from serving as a collections center for growth species, the gold droplets carry an additional crucial role that necessarily precedes the nanowire emergence, that is, they assist the nucleation of nanocraters with strongly faceted 111B side walls. Only once these facets become sufficiently large and regular, the gold droplets start nucleating and guiding the growth of nanowires. We show that this dual role of the gold droplets can be detected and monitored by high energy electron diffraction during growth. Moreover, gold induced formation of craters and the onset of nanowires growth on the 111B facets inside the craters are confirmed by the results of Monte Carlo simulations. The detailed insight into the growth mechanism of inclined nanowires will help to engineer new and complex nanowire based device architectures.
Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silicon mushroom-type microrings that is compatible with integrated nanophotonic circuits with the goal of achieving electrically injected lasing. Using a central buried n-contact to bypass the insulating buffer layers, we are able to underetch the microring, which is essential for maintaining vertical confinement in a thin disk. We demonstrate direct current room-temperature electroluminescence with 440 mW/cm$^2$ output power density at 20 mA from such microrings with diameters of 30 to 50 $mu$m. The first steps towards achieving an integrated photonic circuit are demonstrated.
Frequency microcombs, successors to mode-locked laser and fiber combs, enable miniature rulers of light for applications including precision metrology, molecular fingerprinting, and exoplanet discoveries. To enable the frequency ruling function, microcombs must be stabilized by locking their carrier-envelop offset frequency. So far, the microcomb stabilization remains compounded by the elaborate optics external to the chip, thus evading its scaling benefit. To address this challenge, here we demonstrate a nanophotonic chip solution based on aluminum nitride thin films, which simultaneously offer optical Kerr nonlinearity for generating octave soliton combs and Pockels nonlinearity for enabling heterodyne detection of the offset frequency. The agile dispersion control of crystalline III-Nitride photonics permits high-fidelity generation of solitons with features including 1.5-octave comb span, dual dispersive waves, and sub-terahertz repetition rates down to 220 gigahertz. These attractive characteristics, aided by on-chip phase-matched aluminum nitride waveguides, allow the full determination of the offset frequency. Our proof-of-principle demonstration represents an important milestone towards fully-integrated self-locked microcombs for portable optical atomic clocks and frequency synthesizers.