Do you want to publish a course? Click here

III-nitride on silicon electrically injected microrings for nanophotonic circuits

89   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silicon mushroom-type microrings that is compatible with integrated nanophotonic circuits with the goal of achieving electrically injected lasing. Using a central buried n-contact to bypass the insulating buffer layers, we are able to underetch the microring, which is essential for maintaining vertical confinement in a thin disk. We demonstrate direct current room-temperature electroluminescence with 440 mW/cm$^2$ output power density at 20 mA from such microrings with diameters of 30 to 50 $mu$m. The first steps towards achieving an integrated photonic circuit are demonstrated.



rate research

Read More

Ultraviolet microdisk lasers are integrated monolithically into photonic circuits using a III-nitride on silicon platform with gallium nitride (GaN) as the main waveguiding layer. The photonic circuits consist of a microdisk and a pulley waveguide terminated by out-coupling gratings. We measure quality factors up to 3500 under continuous-wave excitation. Lasing is observed from 374 nm to 399 nm under pulsed excitation, achieving low threshold energies of $0.14 ~text{mJ/cm}^2$ per pulse (threshold peak powers of $35 ~text{kW/cm}^2$). A large peak to background dynamic of around 200 is observed at the out-coupling grating for small gaps of 50 nm between the disk and waveguide. These devices operate at the limit of what can be achieved with GaN in terms of operation wavelength.
On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties. We observe critical coupling and phase matching, i.e. the most efficient energy transfer scheme, for very short gap sizes and thin waveguides (g = 45 nm and w = 170 nm) in the spontaneous emission regime. Whispering gallery mode lasing is demonstrated for a wide range of parameters with a strong dependence of the threshold on the loaded quality factor. We show the dependence and high sensitivity of the output signal on the coupling. Lastly, we observe the impact of processing on the tuning of mode resonances due to the very short coupling distances. Such small footprint on-chip integrated microlasers providing maximum energy transfer into a photonic circuit have important potential applications for visible-light communication and lab-on-chip bio-sensors.
Low-loss photonic integrated circuits (PIC) and microresonators have enabled novel applications ranging from narrow-linewidth lasers, microwave photonics, to chip-scale optical frequency combs and quantum frequency conversion. To translate these results into a widespread technology, attaining ultralow optical losses with established foundry manufacturing is critical. Recent advances in fabrication of integrated Si3N4 photonics have shown that ultralow-loss, dispersion-engineered microresonators can be attained at die-level throughput. For emerging nonlinear applications such as integrated travelling-wave parametric amplifiers and mode-locked lasers, PICs of length scales of up to a meter are required, placing stringent demands on yield and performance that have not been met with current fabrication techniques. Here we overcome these challenges and demonstrate a fabrication technology which meets all these requirements on wafer-level yield, performance and length scale. Photonic microresonators with a mean Q factor exceeding 30 million, corresponding to a linear propagation loss of 1.0 dB/m, are obtained over full 4-inch wafers, as determined from a statistical analysis of tens of thousands of optical resonances and cavity ringdown with 19 ns photon storage time. The process operates over large areas with high yield, enabling 1-meter-long spiral waveguides with 2.4 dB/m loss in dies of only 5x5 mm size. Using a modulation response measurement self-calibrated via the Kerr nonlinearity, we reveal that, strikingly, the intrinsic absorption-limited Q factor of our Si3N4 microresonators exceeds a billion. Transferring the present Si3N4 photonics technology to standard commercial foundries, and merging it with silicon photonics using heterogeneous integration technology, will significantly expand the scope of todays integrated photonics and seed new applications.
78 - D. Chen , P. Manley , P. Tockhorn 2018
Perovskite-silicon tandem solar cells are currently one of the most investigated concepts to overcome the theoretical limit for the power conversion efficiency of silicon solar cells. For monolithic tandem solar cells the available light must be distributed equally between the two subcells, which is known as current matching. For a planar device design, a global optimization of the layer thicknesses in the perovskite top cell allows current matching to be reached and reflective losses of the solar cell to be minimized at the same time. However, even after this optimization reflection and parasitic absorption losses occur, which add up to 7 mA/cm$^2$. In this contribution we use numerical simulations to study, how well hexagonal sinusoidal nanotextures in the perovskite top-cell can reduce the reflective losses of the combined tandem device. We investigate three configurations. The current density utilization can be increased from 91% for the optimized planar reference to 98% for the best nanotextured device (period 500 nm and peak-to-valley height 500 nm), where 100% refers to the Tiedje-Yablonovitch limit. In a first attempt to experimentally realize such nanophotonically structured perovskite solar cells for monolithic tandems, we investigate the morphology of perovskite layers, which are deposited onto sinusoidally structured substrates.
III-nitride-on-silicon L3 photonic crystal cavities with resonances down to 315 nm and quality factors (Q) up to 1085 at 337 nm have been demonstrated. The reduction of the quality factor with decreasing wavelength is investigated. Besides the quantum well absorption below 340 nm, a noteworthy contribution is attributed to the residual absorption present in thin AlN layers grown on silicon, as measured by spectroscopic ellipsometry. This residual absorption ultimately limits the Q factor to around 2000 at 300 nm when no active layer is present.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا