Do you want to publish a course? Click here

ISIA Food-500: A Dataset for Large-Scale Food Recognition via Stacked Global-Local Attention Network

87   0   0.0 ( 0 )
 Added by Weiqing Min
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Food recognition has received more and more attention in the multimedia community for its various real-world applications, such as diet management and self-service restaurants. A large-scale ontology of food images is urgently needed for developing advanced large-scale food recognition algorithms, as well as for providing the benchmark dataset for such algorithms. To encourage further progress in food recognition, we introduce the dataset ISIA Food- 500 with 500 categories from the list in the Wikipedia and 399,726 images, a more comprehensive food dataset that surpasses existing popular benchmark datasets by category coverage and data volume. Furthermore, we propose a stacked global-local attention network, which consists of two sub-networks for food recognition. One subnetwork first utilizes hybrid spatial-channel attention to extract more discriminative features, and then aggregates these multi-scale discriminative features from multiple layers into global-level representation (e.g., texture and shape information about food). The other one generates attentional regions (e.g., ingredient relevant regions) from different regions via cascaded spatial transformers, and further aggregates these multi-scale regional features from different layers into local-level representation. These two types of features are finally fused as comprehensive representation for food recognition. Extensive experiments on ISIA Food-500 and other two popular benchmark datasets demonstrate the effectiveness of our proposed method, and thus can be considered as one strong baseline. The dataset, code and models can be found at http://123.57.42.89/FoodComputing-Dataset/ISIA-Food500.html.



rate research

Read More

153 - Xiongwei Wu , Xin Fu , Ying Liu 2021
Food image segmentation is a critical and indispensible task for developing health-related applications such as estimating food calories and nutrients. Existing food image segmentation models are underperforming due to two reasons: (1) there is a lack of high quality food image datasets with fine-grained ingredient labels and pixel-wise location masks -- the existing datasets either carry coarse ingredient labels or are small in size; and (2) the complex appearance of food makes it difficult to localize and recognize ingredients in food images, e.g., the ingredients may overlap one another in the same image, and the identical ingredient may appear distinctly in different food images. In this work, we build a new food image dataset FoodSeg103 (and its extension FoodSeg154) containing 9,490 images. We annotate these images with 154 ingredient classes and each image has an average of 6 ingredient labels and pixel-wise masks. In addition, we propose a multi-modality pre-training approach called ReLeM that explicitly equips a segmentation model with rich and semantic food knowledge. In experiments, we use three popular semantic segmentation methods (i.e., Dilated Convolution based, Feature Pyramid based, and Vision Transformer based) as baselines, and evaluate them as well as ReLeM on our new datasets. We believe that the FoodSeg103 (and its extension FoodSeg154) and the pre-trained models using ReLeM can serve as a benchmark to facilitate future works on fine-grained food image understanding. We make all these datasets and methods public at url{https://xiongweiwu.github.io/foodseg103.html}.
Food recognition plays an important role in food choice and intake, which is essential to the health and well-being of humans. It is thus of importance to the computer vision community, and can further support many food-oriented vision and multimodal tasks. Unfortunately, we have witnessed remarkable advancements in generic visual recognition for released large-scale datasets, yet largely lags in the food domain. In this paper, we introduce Food2K, which is the largest food recognition dataset with 2,000 categories and over 1 million images.Compared with existing food recognition datasets, Food2K bypasses them in both categories and images by one order of magnitude, and thus establishes a new challenging benchmark to develop advanced models for food visual representation learning. Furthermore, we propose a deep progressive region enhancement network for food recognition, which mainly consists of two components, namely progressive local feature learning and region feature enhancement. The former adopts improved progressive training to learn diverse and complementary local features, while the latter utilizes self-attention to incorporate richer context with multiple scales into local features for further local feature enhancement. Extensive experiments on Food2K demonstrate the effectiveness of our proposed method. More importantly, we have verified better generalization ability of Food2K in various tasks, including food recognition, food image retrieval, cross-modal recipe retrieval, food detection and segmentation. Food2K can be further explored to benefit more food-relevant tasks including emerging and more complex ones (e.g., nutritional understanding of food), and the trained models on Food2K can be expected as backbones to improve the performance of more food-relevant tasks. We also hope Food2K can serve as a large scale fine-grained visual recognition benchmark.
Food logo detection plays an important role in the multimedia for its wide real-world applications, such as food recommendation of the self-service shop and infringement detection on e-commerce platforms. A large-scale food logo dataset is urgently needed for developing advanced food logo detection algorithms. However, there are no available food logo datasets with food brand information. To support efforts towards food logo detection, we introduce the dataset FoodLogoDet-1500, a new large-scale publicly available food logo dataset, which has 1,500 categories, about 100,000 images and about 150,000 manually annotated food logo objects. We describe the collection and annotation process of FoodLogoDet-1500, analyze its scale and diversity, and compare it with other logo datasets. To the best of our knowledge, FoodLogoDet-1500 is the first largest publicly available high-quality dataset for food logo detection. The challenge of food logo detection lies in the large-scale categories and similarities between food logo categories. For that, we propose a novel food logo detection method Multi-scale Feature Decoupling Network (MFDNet), which decouples classification and regression into two branches and focuses on the classification branch to solve the problem of distinguishing multiple food logo categories. Specifically, we introduce the feature offset module, which utilizes the deformation-learning for optimal classification offset and can effectively obtain the most representative features of classification in detection. In addition, we adopt a balanced feature pyramid in MFDNet, which pays attention to global information, balances the multi-scale feature maps, and enhances feature extraction capability. Comprehensive experiments on FoodLogoDet-1500 and other two benchmark logo datasets demonstrate the effectiveness of the proposed method. The FoodLogoDet-1500 can be found at this https URL.
103 - Doyen Sahoo , Wang Hao , Shu Ke 2019
An important aspect of health monitoring is effective logging of food consumption. This can help management of diet-related diseases like obesity, diabetes, and even cardiovascular diseases. Moreover, food logging can help fitness enthusiasts, and people who wanting to achieve a target weight. However, food-logging is cumbersome, and requires not only taking additional effort to note down the food item consumed regularly, but also sufficient knowledge of the food item consumed (which is difficult due to the availability of a wide variety of cuisines). With increasing reliance on smart devices, we exploit the convenience offered through the use of smart phones and propose a smart-food logging system: FoodAI, which offers state-of-the-art deep-learning based image recognition capabilities. FoodAI has been developed in Singapore and is particularly focused on food items commonly consumed in Singapore. FoodAI models were trained on a corpus of 400,000 food images from 756 different classes. In this paper we present extensive analysis and insights into the development of this system. FoodAI has been deployed as an API service and is one of the components powering Healthy 365, a mobile app developed by Singapores Heath Promotion Board. We have over 100 registered organizations (universities, companies, start-ups) subscribing to this service and actively receive several API requests a day. FoodAI has made food logging convenient, aiding smart consumption and a healthy lifestyle.
Food retrieval is an important task to perform analysis of food-related information, where we are interested in retrieving relevant information about the queried food item such as ingredients, cooking instructions, etc. In this paper, we investigate cross-modal retrieval between food images and cooking recipes. The goal is to learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another. Two major challenges in addressing this problem are 1) large intra-variance and small inter-variance across cross-modal food data; and 2) difficulties in obtaining discriminative recipe representations. To address these two problems, we propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities. Besides, we exploit a self-attention mechanism to improve the embedding of recipes. We evaluate the performance of the proposed method on the large-scale Recipe1M dataset, and show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا