Do you want to publish a course? Click here

Infinite sum relations on universal C*-algebras

205   0   0.0 ( 0 )
 Added by Gilles de Castro
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We extend the usual theory of universal C*-algebras from generators and relations in order to allow some relations to be described using the strong operator topology. In particular, we can allow some infinite sum relations. We prove a universal property for the algebras we define and we show how the Cuntz algebra of infinite isometries as well as the Exel-Laca algebras can be described using infinite sum relations. Finally, we give some sufficient conditions for when a C*-algebra generated by projections and partial isometries is a universal C*-algebra using only norm relations, in case one still wants to avoid using relations with respect to the strong operator topology.



rate research

Read More

From a suitable groupoid G, we show how to construct an amenable principal groupoid whose C*-algebra is a Kirchberg algebra which is KK-equivalent to C*(G). Using this construction, we show by example that many UCT Kirchberg algebras can be realised as the C*-algebras of amenable principal groupoids.
Let M be a smooth Fredholm manifold modeled on a separable infinite-dimensional Euclidean space E with Riemannian metric g. Given an (augmented) Fredholm filtration F of M by finite-dimensional submanifolds (M_n), we associate to the triple (M, g, F) a non-commutative direct limit C*-algebra A(M, g, F) = lim A(M_n) that can play the role of the algebra of functions vanishing at infinity on the non-locally compact space M. The C*-algebra A(E), as constructed by Higson-Kasparov-Trout for their Bott periodicity theorem for infinite dimensional Euclidean spaces, is isomorphic to our construction when M = E. If M has an oriented Spin_q-structure (1 <= q <=infty), then the K-theory of this C*-algebra is the same (with dimension shift) as the topological K-theory of M defined by Mukherjea. Furthermore, there is a Poincare duality isomorphism of this K-theory of M with the compactly supported K-homology of M, just as in the finite-dimensional spin setting.
Let $G$ be a Hausdorff, etale groupoid that is minimal and topologically principal. We show that $C^*_r(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^0)$ are infinite in $C_r^*(G)$. If $G$ is a Hausdorff, ample groupoid, then we show that $C^*_r(G)$ is purely infinite simple if and only if every nonzero projection in $C_0(G^0)$ is infinite in $C^*_r(G)$. We then show how this result applies to $k$-graph $C^*$-algebras. Finally, we investigate strongly purely infinite groupoid $C^*$-algebras.
We introduce P-graphs, which are generalisations of directed graphs in which paths have a degree in a semigroup P rather than a length in N. We focus on semigroups P arising as part of a quasi-lattice ordered group (G,P) in the sense of Nica, and on P-graphs which are finitely aligned in the sense of Raeburn and Sims. We show that each finitely aligned P-graph admits a C*-algebra C*_{min}(Lambda) which is co-universal for partial-isometric representations of Lambda which admit a coaction of G compatible with the P-valued length function. We also characterise when a homomorphism induced by the co-universal property is injective. Our results combined with those of Spielberg show that every Kirchberg algebra is Morita equivalent C*_{min}(Lambda) for some (N^2 * N)-graph Lambda.
95 - Menevc{s}e Eryuzlu 2021
We construct a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras. The objects in our domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions. Applications include a generalization of the well-known result of Muhly and Solel: Morita equivalent $C^*$-correspondences have Morita equivalent Cuntz-Pimsner algebras; as well as a generalization of the result of Kakariadis and Katsoulis: Regular shift equivalent $C^*$-correspondences have Morita equivalent Cuntz-Pimsner algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا