Do you want to publish a course? Click here

Purely infinite $C^*$-algebras associated to etale groupoids

242   0   0.0 ( 0 )
 Added by Lisa Orloff Clark
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Let $G$ be a Hausdorff, etale groupoid that is minimal and topologically principal. We show that $C^*_r(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^0)$ are infinite in $C_r^*(G)$. If $G$ is a Hausdorff, ample groupoid, then we show that $C^*_r(G)$ is purely infinite simple if and only if every nonzero projection in $C_0(G^0)$ is infinite in $C^*_r(G)$. We then show how this result applies to $k$-graph $C^*$-algebras. Finally, we investigate strongly purely infinite groupoid $C^*$-algebras.



rate research

Read More

From a suitable groupoid G, we show how to construct an amenable principal groupoid whose C*-algebra is a Kirchberg algebra which is KK-equivalent to C*(G). Using this construction, we show by example that many UCT Kirchberg algebras can be realised as the C*-algebras of amenable principal groupoids.
To a large class of graphs of groups we associate a C*-algebra universal for generators and relations. We show that this C*-algebra is stably isomorphic to the crossed product induced from the action of the fundamental group of the graph of groups on the boundary of its Bass-Serre tree. We characterise when this action is minimal, and find a sufficient condition under which it is locally contractive. In the case of generalised Baumslag-Solitar graphs of groups (graphs of groups in which every group is infinite cyclic) we also characterise topological freeness of this action. We are then able to establish a dichotomy for simple C*-algebras associated to generalised Baumslag-Solitar graphs of groups: they are either a Kirchberg algebra, or a stable Bunce-Deddens algebra.
We introduce P-graphs, which are generalisations of directed graphs in which paths have a degree in a semigroup P rather than a length in N. We focus on semigroups P arising as part of a quasi-lattice ordered group (G,P) in the sense of Nica, and on P-graphs which are finitely aligned in the sense of Raeburn and Sims. We show that each finitely aligned P-graph admits a C*-algebra C*_{min}(Lambda) which is co-universal for partial-isometric representations of Lambda which admit a coaction of G compatible with the P-valued length function. We also characterise when a homomorphism induced by the co-universal property is injective. Our results combined with those of Spielberg show that every Kirchberg algebra is Morita equivalent C*_{min}(Lambda) for some (N^2 * N)-graph Lambda.
Given a normal subgroup bundle $mathcal A$ of the isotropy bundle of a groupoid $Sigma$, we obtain a twisted action of the quotient groupoid $Sigma/mathcal A$ on the bundle of group $C^*$-algebras determined by $mathcal A$ whose twisted crossed product recovers the groupoid $C^*$-algebra $C^*(Sigma)$. Restricting to the case where $mathcal A$ is abelian, we describe $C^*(Sigma)$ as the $C^*$-algebra associated to a $mathbf T$-groupoid over the tranformation groupoid obtained from the canonical action of $Sigma/mathcal A$ on the Pontryagin dual space of $mathcal A$. We give some illustrative examples of this result.
We study purely atomic representations of C*-algebras associated to row-finite and source-free higher-rank graphs. We describe when purely atomic representations are unitarily equivalent and we give necessary and sufficient conditions for a purely atomic representation to be irreducible in terms of the associated projection valued measure. We also investigate the relationship between purely atomic representations, monic representations and permutative representations, and we describe when a purely atomic representation admits a decomposition consisting of permutative representations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا