Do you want to publish a course? Click here

On C*-algebras and K-theory for infinite-dimensional Fredholm Manifolds

74   0   0.0 ( 0 )
 Added by Jody Trout
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Let M be a smooth Fredholm manifold modeled on a separable infinite-dimensional Euclidean space E with Riemannian metric g. Given an (augmented) Fredholm filtration F of M by finite-dimensional submanifolds (M_n), we associate to the triple (M, g, F) a non-commutative direct limit C*-algebra A(M, g, F) = lim A(M_n) that can play the role of the algebra of functions vanishing at infinity on the non-locally compact space M. The C*-algebra A(E), as constructed by Higson-Kasparov-Trout for their Bott periodicity theorem for infinite dimensional Euclidean spaces, is isomorphic to our construction when M = E. If M has an oriented Spin_q-structure (1 <= q <=infty), then the K-theory of this C*-algebra is the same (with dimension shift) as the topological K-theory of M defined by Mukherjea. Furthermore, there is a Poincare duality isomorphism of this K-theory of M with the compactly supported K-homology of M, just as in the finite-dimensional spin setting.



rate research

Read More

We initiate the study of real $C^*$-algebras associated to higher-rank graphs $Lambda$, with a focus on their $K$-theory. Following Kasparov and Evans, we identify a spectral sequence which computes the $mathcal{CR}$ $K$-theory of $C^*_{mathbb R} (Lambda, gamma)$ for any involution $gamma$ on $Lambda$, and show that the $E^2$ page of this spectral sequence can be straightforwardly computed from the combinatorial data of the $k$-graph $Lambda$ and the involution $gamma$. We provide a complete description of $K^{CR}(C^*_{mathbb R}(Lambda, gamma))$ for several examples of higher-rank graphs $Lambda$ with involution.
We give explicit Fredholm conditions for classes of pseudodifferential operators on suitable singular and non-compact spaces. In particular, we include a users guide to Fredholm conditions on particular classes of manifolds including asymptotically hyperbolic manifolds, asymptotically Euclidean (or conic) manifolds, and manifolds with poly-cylindrical ends. The reader interested in applications should be able read right away the results related to those examples, beginning with Section 5. Our general, theoretical results are that an operator adapted to the geometry is Fredholm if, and only if, it is elliptic and all its limit operators, in a sense to be made precise, are invertible. Central to our theoretical results is the concept of a Fredholm groupoid, which is the class of groupoids for which this characterization of the Fredholm condition is valid. We use the notions of exhaustive and strictly spectral families of representations to obtain a general characterization of Fredholm groupoids. In particular, we introduce the class of the so-called groupoids with Exels property as the groupoids for which the regular representations are exhaustive. We show that the class of stratified submersion groupoids has Exels property, where stratified submersion groupoids are defined by glueing fibered pull-backs of bundles of Lie groups. We prove that a stratified submersion groupoid is Fredholm whenever its isotropy groups are amenable. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. This fact is explored to yield Fredholm conditions not only in the above mentioned classes, but also on manifolds that are obtained by desingularization or by blow-up of singular sets.
We develop methods for computing graded K-theory of C*-algebras as defined in terms of Kasparov theory. We establish grad
We extend the usual theory of universal C*-algebras from generators and relations in order to allow some relations to be described using the strong operator topology. In particular, we can allow some infinite sum relations. We prove a universal property for the algebras we define and we show how the Cuntz algebra of infinite isometries as well as the Exel-Laca algebras can be described using infinite sum relations. Finally, we give some sufficient conditions for when a C*-algebra generated by projections and partial isometries is a universal C*-algebra using only norm relations, in case one still wants to avoid using relations with respect to the strong operator topology.
We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed graphs for gradings induced by ${0,1}$-valued labellings of their edge sets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا