Do you want to publish a course? Click here

Purely infinite simple C*-algebras that are principal groupoid C*-algebras

206   0   0.0 ( 0 )
 Added by Jonathan Brown
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

From a suitable groupoid G, we show how to construct an amenable principal groupoid whose C*-algebra is a Kirchberg algebra which is KK-equivalent to C*(G). Using this construction, we show by example that many UCT Kirchberg algebras can be realised as the C*-algebras of amenable principal groupoids.



rate research

Read More

Renault proved in 2008 that if $G$ is a topologically principal groupoid, then $C_0(G^{(0)})$ is a Cartan subalgebra in $C^*_r(G, Sigma)$ for any twist $Sigma$ over $G$. However, there are many groupoids which are not topologically principal, yet their (twisted) $C^*$-algebras admit Cartan subalgebras. This paper gives a dynamical description of a class of such Cartan subalgebras, by identifying conditions on a 2-cocycle $c$ on $G$ and a subgroupoid $S subseteq G$ under which $C^*_r(S, c)$ is Cartan in $C^*_r(G, c)$. When $G$ is a discrete group, we also describe the Weyl groupoid and twist associated to these Cartan pairs, under mild additional hypotheses.
Let $G$ be a Hausdorff, etale groupoid that is minimal and topologically principal. We show that $C^*_r(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^0)$ are infinite in $C_r^*(G)$. If $G$ is a Hausdorff, ample groupoid, then we show that $C^*_r(G)$ is purely infinite simple if and only if every nonzero projection in $C_0(G^0)$ is infinite in $C^*_r(G)$. We then show how this result applies to $k$-graph $C^*$-algebras. Finally, we investigate strongly purely infinite groupoid $C^*$-algebras.
I. Raeburn and J. Taylor have constructed continuous-trace C*-algebras with a prescribed Dixmier-Douady class, which also depend on the choice of an open cover of the spectrum. We study the asymptotic behavior of these algebras with respect to certain refinements of the cover and appropriate extension of cocycles. This leads to the analysis of a limit groupoid G and a cocycle sigma, and the algebra C*(G, sigma) may be regarded as a generalized direct limit of the Raeburn-Taylor algebras. As a special case, all UHF C*-algebras arise from this limit construction.
We characterise, in several complementary ways, etale groupoids with locally compact Hausdorff space of units whose essential groupoid C*-algebra has the ideal intersection property, assuming that the groupoid is either Hausdorff or $sigma$-compact. This leads directly to a characterisation of the simplicity of this C*-algebra which, for Hausdorff groupoids, agrees with the reduced groupoid C*-algebra. Specifically, we prove that the ideal intersection property is equivalent to the absence of essentially confined amenable sections of isotropy groups. For groupoids with compact space of units we moreover show that is equivalent to the uniqueness of equivariant pseudo-expectations and in the minimal case to an appropriate generalisation of Powers averaging property. A key technical idea underlying our results is a new notion of groupoid action on C*-algebras that includes the essential groupoid C*-algebra itself. By considering a relative version of Powers averaging property, we obtain new examples of C*-irreducible inclusions in the sense of R{o}rdam. These arise from the inclusion of the C*-algebra generated by a suitable group representation into a simple groupoid C*-algebra. This is illustrated by the example of the C*-algebra generated by the quasi-regular representation of Thompsons group T with respect to Thompsons group F, which is contained C*-irreducibly in the Cuntz algebra $mathcal{O}_2$.
We compute the nuclear dimension of separable, simple, unital, nuclear, Z-stable C*-algebras. This makes classification accessible from Z-stability and in particular brings large classes of C*-algebras associated to free and minimal actions of amenable groups on finite dimensional spaces within the scope of the Elliott classification programme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا