Do you want to publish a course? Click here

Linking ice and gas in the Serpens low-mass star-forming region

124   0   0.0 ( 0 )
 Added by Giulia Perotti
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction between dust, ice, and gas during the formation of stars produces complex organic molecules. While observations indicate that several species are formed on ice-covered dust grains and are released into the gas phase, the exact chemical interplay between solid and gas phases and their relative importance remain unclear. Our goal is to study the interplay in regions of low-mass star formation through ice- and gas-mapping and by directly measuring gas-to-ice ratios. This provides constraints on the routes that lead to the chemical complexity that is observed in both phases. We present observations of gas-phase methanol (CH$_3$OH) and carbon monoxide at 1.3 mm towards ten low-mass young protostars in the Serpens SVS4 cluster from the SubMillimeter Array and the Atacama Pathfinder EXperiment telescope. We used archival data from the Very Large Telescope to derive abundances of ice H$_2$O, CO, and CH$_3$OH towards the same region. Finally, we constructed gas-ice maps of SVS4 and directly measured CO and CH$_3$OH gas-to-ice ratios. The CH$_3$OH gas-to-ice ratio agrees with values that were previously reported for embedded Class 0/I low-mass protostars. The CO gas-maps trace an extended gaseous component that is not sensitive to the effect of freeze-out. We find that there is no straightforward correlation between CO and CH$_3$OH gas with their ice counterparts in the cluster. This is likely related to the complex morphology of SVS4: the Class 0 protostar SMM4 and its envelope lie in the vicinity, and the outflow associated with SMM4 intersects the cluster. This study serves as a pathfinder for future observations with ALMA and the James Webb Space Telescope that will provide high-sensitivity gas-ice maps of molecules more complex than methanol. Such comparative maps will be essential to constrain the chemical routes that regulate the chemical complexity in star-forming regions.



rate research

Read More

Using the Green Bank 100 m telescope and the Nobeyama 45 m telescope, we have observed the rotational emission lines of the three 13C isotopic species of HC3N in the 3 and 7 mm bands toward the low-mass star-forming region L1527 in order to explore their anomalous 12C/13C ratios. The column densities of the 13C isotopic species are derived from the intensities of the J = 5-4 lines observed at high signal-to-noise ratios. The abundance ratios are determined to be 1.00:1.01 +- 0.02:1.35 +- 0.03:86.4 +- 1.6 for [H13CCCN]:[HC13CCN]:[HCC13CN]:[HCCCN], where the errors represent one standard deviation. The ratios are very similar to those reported for the starless cloud, Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP). These ratios cannot be explained by thermal equilibrium, but likely reflect the production pathways of this molecule. We have shown the equality of the abundances of H13CCCN and HC13CCN at a high-confidence level, which supports the production pathways of HC3N via C2H2 and C2H2+. The average 12C/13C ratio for HC3N is 77 +- 4, which may be only slightly higher than the elemental 12C/13C ratio. Dilution of the 13C isotope in HC3N is not as significant as that in CCH or c-C3H2. We have also simultaneously observed the DCCCN and HCCC15N lines and derived the isotope ratios: [DCCCN]/[HCCCN] = 0.0370 +- 0.0007 and [HCCCN]/[HCCC15N] = 338 +- 12.
We have analyzed the Atacama Large Millimeter/submillimeter Array (ALMA) cycle 2 data of band 6 toward the G345.4938+01.4677 massive young protostellar object (G345.5+1.47 MYSO) in the IRAS 16562--3959 high-mass star-forming region with an angular resolution of $sim 0.3$, corresponding to $sim 760$ au. We spatially resolve the central region which consists of three prominent molecular emission cores. A hypercompact (HC) H$_{rm {II}}$ region (Core A) and two molecule-rich cores (Core B and Core C) are identified using the moment zero images of the H30$alpha$ line and a CH$_{3}$OH line, respectively. Various oxygen-bearing complex organic molecules (COMs), such as (CH$_{3}$)$_{2}$CO and CH$_{3}$OCHO, have been detected toward the positions of Core B and Core C, while nitrogen-bearing species, CH$_{3}$CN, HC$_{3}$N and its $^{13}$C isotopologues, have been detected toward all of the cores. We discuss the formation mechanisms of H$_{2}$CO by comparing the spatial distribution of C$^{18}$O with that of H$_{2}$CO. The $^{33}$SO emission, on the other hand, shows a ring-like structure surrounding Core A, and it peaks on the outer edge of the H30$alpha$ emission region. These results imply that SO is enhanced in a shock produced by the expanding motion of the ionized region.
This poster presents single-dish and aperture-synthesis observations of the J=1-0 (lambda~3 mm) transitions of HCO+, HCN, and N2H+ towards the Serpens star-forming region. Jets driven by young stars affect the structure and the chemistry of their surrounding cloud, and this work aims to assess the extent to which the emission of these three molecular lines is dominated by such processes. In Serpens I find that N2H+ 1-0 traces the total amount of material, except in two regions slightly ahead of shocks. In contrast, the HCO+ and, especially, HCN emission is dominated by regions impacted by outflows. One previously unknown, strongly shocked region is located ~0.1 pc northwest of the young stellar object SMM 4. There is a marked spatial offset between the peaks in the HCN and the N2H+ emission associated with shocked regions. I construct a simple, qualitative chemical model where the N2H+ emission increases in the magnetic precursor of a C-type shock, while N2H+ is destroyed deeper in the shock as the neutrals heat up and species like HCN and water are released from icy grain mantles. I conclude that N2H+ is a reliable tracer of cloud material, and that unresolved observations of HCO+ and HCN will be dominated by material impacted by outflows.
We have carried out interferometric observations of cyanopolyynes, HC$_{3}$N, HC$_{5}$N, and HC$_{7}$N, in the 36 GHz band toward the G28.28$-$0.36 high-mass star-forming region using the Karl G. Jansky Very Large Array (VLA) Ka-band receiver. The spatial distributions of HC$_{3}$N and HC$_{5}$N are obtained. HC$_{5}$N emission is coincident with a 450 $mu$m dust continuum emission and this clump with a diameter of $sim 0.2$ pc is located at the east position from the 6.7 GHz methanol maser by $sim 0.15$ pc. HC$_{7}$N is tentatively detected toward the clump. The HC$_{3}$N : HC$_{5}$N : HC$_{7}$N column density ratios are estimated at 1.0 : $sim 0.3$ : $sim 0.2$ at an HC$_{7}$N peak position. We discuss possible natures of the 450 $mu$m continuum clump associated with the cyanopolyynes. The 450 $mu$m continuum clump seems to contain deeply embedded low- or intermediate-mass protostellar cores, and the most possible formation mechanism of the cyanopolyynes is the warm carbon chain chemistry (WCCC) mechanism. In addition, HC$_{3}$N and compact HC$_{5}$N emission is detected at the edge of the 4.5 $mu$m emission, which possibly implies that such emission is the shock origin.
156 - A. Bayo , D. Barrado , N. Huelamo 2012
Context. Most observational studies so far point towards brown dwarfs sharing a similar formation mechanism as the one accepted for low mass stars. However, larger databases and more systematic studies are needed before strong conclusions can be reached. Aims. In this second paper of a series devoted to the study of the spectroscopic properties of the members of the Lambda Orionis Star Forming Region, we study accretion, activity and rotation for a wide set of spectroscopically confirmed members of the central star cluster Collinder 69 to draw analogies and/or differences between the brown dwarf and stellar populations of this cluster. Moreover, we present comparisons with other star forming regions of similar and different ages to address environmental effects on our conclusions. Methods. We study prominent photospheric lines to derive rotational velocities and emission lines to distinguish between accretion processes and chromospheric activity. In addition, we include information about disk presence and X-ray emission. Results. We report very large differences in the disk fractions of low mass stars and brown dwarfs (~58%) when compared to higher mass stars (26+4-3%) with 0.6 Msun being the critical mass we find for this dichotomy. As a byproduct, we address the implications of the spatial distribution of disk and diskless members in the formation scenario of the cluster itself. We have used the Halpha emission to discriminate among accreting and non-accreting sources finding that 38+8-7% of sources harboring disks undergo active accretion and that his percentage stays similar in the substellar regime. For those sources we have estimated accretion rates. Finally, regarding rotational velocities, we find a high dispersion in vsin(i) which is even larger among the diskless population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا