No Arabic abstract
This poster presents single-dish and aperture-synthesis observations of the J=1-0 (lambda~3 mm) transitions of HCO+, HCN, and N2H+ towards the Serpens star-forming region. Jets driven by young stars affect the structure and the chemistry of their surrounding cloud, and this work aims to assess the extent to which the emission of these three molecular lines is dominated by such processes. In Serpens I find that N2H+ 1-0 traces the total amount of material, except in two regions slightly ahead of shocks. In contrast, the HCO+ and, especially, HCN emission is dominated by regions impacted by outflows. One previously unknown, strongly shocked region is located ~0.1 pc northwest of the young stellar object SMM 4. There is a marked spatial offset between the peaks in the HCN and the N2H+ emission associated with shocked regions. I construct a simple, qualitative chemical model where the N2H+ emission increases in the magnetic precursor of a C-type shock, while N2H+ is destroyed deeper in the shock as the neutrals heat up and species like HCN and water are released from icy grain mantles. I conclude that N2H+ is a reliable tracer of cloud material, and that unresolved observations of HCO+ and HCN will be dominated by material impacted by outflows.
We present the results of high spatial resolution HCO$^{+}$($1-0$) and HCN($1-0$) observations of N55 south region (N55-S) in the Large Magellanic Cloud (LMC), obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). N55-S is a relatively less extreme star-forming region of the LMC characterized by a low radiation field. We carried out a detailed analysis of the molecular emission to investigate the relation between dense molecular clumps and star formation in the quiescent environment of N55-S. We detect ten molecular clumps with significant HCO$^{+}(1-0)$ emission and eight with significant HCN($1-0$) emission, and estimate the molecular clump masses by virial and local thermodynamic equilibrium analysis. All identified young stellar objects (YSOs) in the N55-S are found to be near the HCO$^{+}$ and HCN emission peaks showing the association of these clumps with recent star formation activity. The molecular clumps that have associated YSOs show relatively larger linewidths and masses than those without YSOs. We compare the clump properties of the N55-S with those of other giant molecular clouds (GMCs) in the LMC and find that N55-S clumps possess similar size but relatively lower linewidth and larger HCN/HCO$^{+}$(1$-$0) flux ratio. These results can be attributed to the low radiation field in N55-S resulted by relatively low star formation activity compared to other active star-forming regions like 30Doradus-10 and N159. The dense gas fraction of N55-S is $sim$ 0.025, lower compared to other GMCs of the LMC supporting the low star formation efficiency of this region.
The interaction between dust, ice, and gas during the formation of stars produces complex organic molecules. While observations indicate that several species are formed on ice-covered dust grains and are released into the gas phase, the exact chemical interplay between solid and gas phases and their relative importance remain unclear. Our goal is to study the interplay in regions of low-mass star formation through ice- and gas-mapping and by directly measuring gas-to-ice ratios. This provides constraints on the routes that lead to the chemical complexity that is observed in both phases. We present observations of gas-phase methanol (CH$_3$OH) and carbon monoxide at 1.3 mm towards ten low-mass young protostars in the Serpens SVS4 cluster from the SubMillimeter Array and the Atacama Pathfinder EXperiment telescope. We used archival data from the Very Large Telescope to derive abundances of ice H$_2$O, CO, and CH$_3$OH towards the same region. Finally, we constructed gas-ice maps of SVS4 and directly measured CO and CH$_3$OH gas-to-ice ratios. The CH$_3$OH gas-to-ice ratio agrees with values that were previously reported for embedded Class 0/I low-mass protostars. The CO gas-maps trace an extended gaseous component that is not sensitive to the effect of freeze-out. We find that there is no straightforward correlation between CO and CH$_3$OH gas with their ice counterparts in the cluster. This is likely related to the complex morphology of SVS4: the Class 0 protostar SMM4 and its envelope lie in the vicinity, and the outflow associated with SMM4 intersects the cluster. This study serves as a pathfinder for future observations with ALMA and the James Webb Space Telescope that will provide high-sensitivity gas-ice maps of molecules more complex than methanol. Such comparative maps will be essential to constrain the chemical routes that regulate the chemical complexity in star-forming regions.
The Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey has detected high-mass star-forming clumps with anomalous N$_2$H$^+$/HCO$^+$(1-0) integrated intensity ratios that are either unusually high (N$_2$H$^+$ rich) or unusually low (N$_2$H$^+$ poor). With 3 mm observations from the Australia Telescope Compact Array (ATCA), we imaged two N$_2$H$^+$ rich clumps, G333.234-00.061 and G345.144-00.216, and two N$_2$H$^+$ poor clumps, G351.409+00.567 and G353.229+00.672. In these clumps, the N$_2$H$^+$ rich anomalies arise from extreme self-absorption of the HCO$^+$ line. G333.234-00.061 contains two of the most massive protostellar cores known with diameters of less than 0.1 pc, separated by a projected distance of only 0.12 pc. Unexpectedly, the higher mass core appears to be at an earlier evolutionary stage than the lower mass core, which may suggest that two different epochs of high-mass star formation can occur in close proximity. Through careful analysis of the ATCA observations and MALT90 clumps (including the G333, NGC 6334, and NGC 6357 star formation regions), we find that N$_2$H$^+$ poor anomalies arise at clump-scales and are caused by lower relative abundances of N$_2$H$^+$ due to the distinct chemistry of H II regions or photodissociation regions.
Aims. The comparative study of several molecular species at the origin of the gas phase chemistry in the diffuse interstellar medium (ISM) is a key input in unraveling the coupled chemical and dynamical evolution of the ISM. Methods. The lowest rotational lines of HCO+, HCN, HNC, and CN were observed at the IRAM-30m telescope in absorption against the lambda 3 mm and lambda 1.3 mm continuum emission of massive star-forming regions in the Galactic plane. The absorption lines probe the gas over kiloparsecs along these lines of sight. The excitation temperatures of HCO+ are inferred from the comparison of the absorptions in the two lowest transitions. The spectra of all molecular species on the same line of sight are decomposed into Gaussian velocity components. Most appear in all the spectra of a given line of sight. For each component, we derived the central opacity, the velocity dispersion, and computed the molecular column density. We compared our results to the predictions of UV-dominated chemical models of photodissociation regions (PDR models) and to those of non-equilibrium models in which the chemistry is driven by the dissipation of turbulent energy (TDR models). Results. The molecular column densities of all the velocity components span up to two orders of magnitude. Those of CN, HCN, and HNC are linearly correlated with each other with mean ratios N(HCN)/N(HNC) = 4.8 $pm$ 1.3 and N(CN)/N(HNC) = 34 $pm$ 12, and more loosely correlated with those of HCO+, N(HNC)/N(HCO+) = 0.5 $pm$ 0.3, N(HCN)/N(HCO+) = 1.9 $pm$ 0.9, and N(CN)/N(HCO+) = 18 $pm$ 9. These ratios are similar to those inferred from observations of high Galactic latitude lines of sight, suggesting that the gas sampled by absorption lines in the Galactic plane has the same chemical properties as that in the Solar neighbourhood. The FWHM of the Gaussian velocity components span the range 0.3 to 3 km s-1 and those of the HCO+ lines are found to be 30% broader than those of CN-bearing molecules. The PDR models fail to reproduce simultaneously the observed abundances of the CN-bearing species and HCO+, even for high-density material (100 cm-3 < nH < 104 cm-3). The TDR models, in turn, are able to reproduce the observed abundances and abundance ratios of all the analysed molecules for the moderate gas densities (30 cm-3 < nH < 200 cm-3) and the turbulent energy observed in the diffuse interstellar medium. Conclusions. Intermittent turbulent dissipation appears to be a promising driver of the gas phase chemistry of the diffuse and translucent gas throughout the Galaxy. The details of the dissipation mechanisms still need to be investigated.
HNC and HCN, typically used as dense gas tracers in molecular clouds, are a pair of isomers that have great potential as a temperature probe because of temperature dependent, isomer-specific formation and destruction pathways. Previous observations of the HNC/HCN abundance ratio show that the ratio decreases with increasing temperature, something that standard astrochemical models cannot reproduce. We have undertaken a detailed parameter study on which environmental characteristics and chemical reactions affect the HNC/HCN ratio and can thus contribute to the observed dependence. Using existing gas and gas-grain models updated with new reactions and reaction barriers, we find that in static models the H + HNC gas-phase reaction regulates the HNC/HCN ratio under all conditions, except for very early times. We quantitively constrain the combinations of H abundance and H + HNC reaction barrier that can explain the observed HNC/HCN temperature dependence and discuss the implications in light of new quantum chemical calculations. In warm-up models, gas-grain chemistry contributes significantly to the predicted HNC/HCN ratio and understanding the dynamics of star formation is therefore key to model the HNC/HCN system.