Do you want to publish a course? Click here

Interferometric Observations of Cyanopolyynes toward the G28.28-0.36 High-Mass Star-Forming Region

79   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have carried out interferometric observations of cyanopolyynes, HC$_{3}$N, HC$_{5}$N, and HC$_{7}$N, in the 36 GHz band toward the G28.28$-$0.36 high-mass star-forming region using the Karl G. Jansky Very Large Array (VLA) Ka-band receiver. The spatial distributions of HC$_{3}$N and HC$_{5}$N are obtained. HC$_{5}$N emission is coincident with a 450 $mu$m dust continuum emission and this clump with a diameter of $sim 0.2$ pc is located at the east position from the 6.7 GHz methanol maser by $sim 0.15$ pc. HC$_{7}$N is tentatively detected toward the clump. The HC$_{3}$N : HC$_{5}$N : HC$_{7}$N column density ratios are estimated at 1.0 : $sim 0.3$ : $sim 0.2$ at an HC$_{7}$N peak position. We discuss possible natures of the 450 $mu$m continuum clump associated with the cyanopolyynes. The 450 $mu$m continuum clump seems to contain deeply embedded low- or intermediate-mass protostellar cores, and the most possible formation mechanism of the cyanopolyynes is the warm carbon chain chemistry (WCCC) mechanism. In addition, HC$_{3}$N and compact HC$_{5}$N emission is detected at the edge of the 4.5 $mu$m emission, which possibly implies that such emission is the shock origin.



rate research

Read More

285 - L. Colzi , F. Fontani , P. Caselli 2019
Nitrogen (N) fractionation is used as a tool to search for a link between the chemical history of the Solar System and star-forming regions. A large variation of $^{14}$N/$^{15}$N is observed towards different astrophysical sources, and current chemical models cannot reproduce it. With the advent of high angular resolution radiotelescopes it is now possible to search for N-fractionation at core scales. We present IRAM NOEMA observations of the J=1-0 transition of N$_{2}$H$^{+}$, $^{15}$NNH$^{+}$ and N$^{15}$NNH$^{+}$ towards the high-mass protocluster IRAS 05358+3543. We find $^{14}$N/$^{15}$N ratios that span from $sim$100 up to $sim$220 and these values are lower or equal than those observed with single-dish observations towards the same source. Since N-fractionation changes across the studied region, this means that it is regulated by local environmental effects. We find also the possibility, for one of the four cores defined in the protocluster, to have a more abundant $^{15}$NNH$^{+}$ with respect to N$^{15}$NNH$^{+}$. This is another indication that current chemical models may be missing chemical reactions or may not take into account other mechanisms, like photodissociation or grain surface chemistry, that could be important.
We have analyzed the Atacama Large Millimeter/submillimeter Array (ALMA) cycle 2 data of band 6 toward the G345.4938+01.4677 massive young protostellar object (G345.5+1.47 MYSO) in the IRAS 16562--3959 high-mass star-forming region with an angular resolution of $sim 0.3$, corresponding to $sim 760$ au. We spatially resolve the central region which consists of three prominent molecular emission cores. A hypercompact (HC) H$_{rm {II}}$ region (Core A) and two molecule-rich cores (Core B and Core C) are identified using the moment zero images of the H30$alpha$ line and a CH$_{3}$OH line, respectively. Various oxygen-bearing complex organic molecules (COMs), such as (CH$_{3}$)$_{2}$CO and CH$_{3}$OCHO, have been detected toward the positions of Core B and Core C, while nitrogen-bearing species, CH$_{3}$CN, HC$_{3}$N and its $^{13}$C isotopologues, have been detected toward all of the cores. We discuss the formation mechanisms of H$_{2}$CO by comparing the spatial distribution of C$^{18}$O with that of H$_{2}$CO. The $^{33}$SO emission, on the other hand, shows a ring-like structure surrounding Core A, and it peaks on the outer edge of the H30$alpha$ emission region. These results imply that SO is enhanced in a shock produced by the expanding motion of the ionized region.
197 - I. Jimenez-Serra 2012
We present high angular resolution observations (0.5x0.3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where different molecular species (Type I, II and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales <3000 AU within a hot core. While Type I species (H2S and 13CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC3N, OCS, SO and SO2) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH3OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO2, HC3N and CH3OH (185+-11 K, 150+-20 K and 124+-12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H2S, SO2 and CH3OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 Mo-star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photo-dissociation and a high-temperature (~1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.
[Abridged] Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The $J = 3leftarrow2$ lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study of spectrally resolved rotational ammonia lines has been used for this purpose. Broad emission is, in addition, mixed with the absorption in the $1_0-0_0$ ortho-NH$_3$ line, possibly tracing a molecular outflow from the star forming region. The best-fitting ALI model reproduces the continuum fluxes and line profiles, but slightly underpredicts the emission and absorption depth in the ground-state ortho line $1_0-0_0$. The derived ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core similar to recent findings for translucent clouds in sight lines toward W31C and W49N. We find evidence of two gas components moving inwards toward the central region with constant velocities: 2.7 and 5.3 km$,$s$^{-1}$, relative to the source systemic velocity. The inferred mass accretion rates derived are sufficient to overcome the expected radiation pressure from G34.26+0.15.
Using the Green Bank 100 m telescope and the Nobeyama 45 m telescope, we have observed the rotational emission lines of the three 13C isotopic species of HC3N in the 3 and 7 mm bands toward the low-mass star-forming region L1527 in order to explore their anomalous 12C/13C ratios. The column densities of the 13C isotopic species are derived from the intensities of the J = 5-4 lines observed at high signal-to-noise ratios. The abundance ratios are determined to be 1.00:1.01 +- 0.02:1.35 +- 0.03:86.4 +- 1.6 for [H13CCCN]:[HC13CCN]:[HCC13CN]:[HCCCN], where the errors represent one standard deviation. The ratios are very similar to those reported for the starless cloud, Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP). These ratios cannot be explained by thermal equilibrium, but likely reflect the production pathways of this molecule. We have shown the equality of the abundances of H13CCCN and HC13CCN at a high-confidence level, which supports the production pathways of HC3N via C2H2 and C2H2+. The average 12C/13C ratio for HC3N is 77 +- 4, which may be only slightly higher than the elemental 12C/13C ratio. Dilution of the 13C isotope in HC3N is not as significant as that in CCH or c-C3H2. We have also simultaneously observed the DCCCN and HCCC15N lines and derived the isotope ratios: [DCCCN]/[HCCCN] = 0.0370 +- 0.0007 and [HCCCN]/[HCCC15N] = 338 +- 12.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا