Do you want to publish a course? Click here

Precise observations of the 12C/13C ratios of HC3N in the low-mass star-forming region L1527

93   0   0.0 ( 0 )
 Added by Mitsunori Araki
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the Green Bank 100 m telescope and the Nobeyama 45 m telescope, we have observed the rotational emission lines of the three 13C isotopic species of HC3N in the 3 and 7 mm bands toward the low-mass star-forming region L1527 in order to explore their anomalous 12C/13C ratios. The column densities of the 13C isotopic species are derived from the intensities of the J = 5-4 lines observed at high signal-to-noise ratios. The abundance ratios are determined to be 1.00:1.01 +- 0.02:1.35 +- 0.03:86.4 +- 1.6 for [H13CCCN]:[HC13CCN]:[HCC13CN]:[HCCCN], where the errors represent one standard deviation. The ratios are very similar to those reported for the starless cloud, Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP). These ratios cannot be explained by thermal equilibrium, but likely reflect the production pathways of this molecule. We have shown the equality of the abundances of H13CCCN and HC13CCN at a high-confidence level, which supports the production pathways of HC3N via C2H2 and C2H2+. The average 12C/13C ratio for HC3N is 77 +- 4, which may be only slightly higher than the elemental 12C/13C ratio. Dilution of the 13C isotope in HC3N is not as significant as that in CCH or c-C3H2. We have also simultaneously observed the DCCCN and HCCC15N lines and derived the isotope ratios: [DCCCN]/[HCCCN] = 0.0370 +- 0.0007 and [HCCCN]/[HCCC15N] = 338 +- 12.



rate research

Read More

An unbiased spectral line survey toward a solar-type Class 0/I protostar, IRAS04368+2557, in L1527 has been carried out in the 3 mm band with the Nobeyama 45 m telescope. L1527 is known as a warm carbon-chain chemistry (WCCC) source, which harbors abundant unsaturated organic species such as C$_n$H ($n = 3, 4, 5,ldots$) in a warm and dense region near the protostar. The observation covers the frequency range from 80 to 116 GHz. A supplementary observation has also been conducted in the 70 GHz band to observe fundamental transitions of deuterated species. In total, 69 molecular species are identified, among which 27 species are carbon-chain species and their isomers, including their minor isotopologues. This spectral line survey provides us with a good template of the chemical composition of the WCCC source.
The interaction between dust, ice, and gas during the formation of stars produces complex organic molecules. While observations indicate that several species are formed on ice-covered dust grains and are released into the gas phase, the exact chemical interplay between solid and gas phases and their relative importance remain unclear. Our goal is to study the interplay in regions of low-mass star formation through ice- and gas-mapping and by directly measuring gas-to-ice ratios. This provides constraints on the routes that lead to the chemical complexity that is observed in both phases. We present observations of gas-phase methanol (CH$_3$OH) and carbon monoxide at 1.3 mm towards ten low-mass young protostars in the Serpens SVS4 cluster from the SubMillimeter Array and the Atacama Pathfinder EXperiment telescope. We used archival data from the Very Large Telescope to derive abundances of ice H$_2$O, CO, and CH$_3$OH towards the same region. Finally, we constructed gas-ice maps of SVS4 and directly measured CO and CH$_3$OH gas-to-ice ratios. The CH$_3$OH gas-to-ice ratio agrees with values that were previously reported for embedded Class 0/I low-mass protostars. The CO gas-maps trace an extended gaseous component that is not sensitive to the effect of freeze-out. We find that there is no straightforward correlation between CO and CH$_3$OH gas with their ice counterparts in the cluster. This is likely related to the complex morphology of SVS4: the Class 0 protostar SMM4 and its envelope lie in the vicinity, and the outflow associated with SMM4 intersects the cluster. This study serves as a pathfinder for future observations with ALMA and the James Webb Space Telescope that will provide high-sensitivity gas-ice maps of molecules more complex than methanol. Such comparative maps will be essential to constrain the chemical routes that regulate the chemical complexity in star-forming regions.
We have carried out interferometric observations of cyanopolyynes, HC$_{3}$N, HC$_{5}$N, and HC$_{7}$N, in the 36 GHz band toward the G28.28$-$0.36 high-mass star-forming region using the Karl G. Jansky Very Large Array (VLA) Ka-band receiver. The spatial distributions of HC$_{3}$N and HC$_{5}$N are obtained. HC$_{5}$N emission is coincident with a 450 $mu$m dust continuum emission and this clump with a diameter of $sim 0.2$ pc is located at the east position from the 6.7 GHz methanol maser by $sim 0.15$ pc. HC$_{7}$N is tentatively detected toward the clump. The HC$_{3}$N : HC$_{5}$N : HC$_{7}$N column density ratios are estimated at 1.0 : $sim 0.3$ : $sim 0.2$ at an HC$_{7}$N peak position. We discuss possible natures of the 450 $mu$m continuum clump associated with the cyanopolyynes. The 450 $mu$m continuum clump seems to contain deeply embedded low- or intermediate-mass protostellar cores, and the most possible formation mechanism of the cyanopolyynes is the warm carbon chain chemistry (WCCC) mechanism. In addition, HC$_{3}$N and compact HC$_{5}$N emission is detected at the edge of the 4.5 $mu$m emission, which possibly implies that such emission is the shock origin.
The rotational spectral lines of c-C$_3$H$_2$ and two kinds of the $^{13}$C isotopic species, c-$^{13}$CCCH$_2$ ($C_{2v}$ symmetry) and c-CC$^{13}$CH$_2$ ($C_s$ symmetry) have been observed in the 1-3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C$_3$H$_2$, c-$^{13}$CCCH$_2$ , and c-CC$^{13}$CH$_2$, respectively, with the Nobeyama 45 m telescope, and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where 7, 2, and 2 transitions, respectively, are observed with the both telescopes. With these data, we have evaluated the column densities of the normal and $^{13}$C isotopic species. The [c-C$_3$H$_2$]/[c-$^{13}$CCCH$_2$] ratio is determined to be $310pm80$, while the [c-C$_3$H$_2$]/[c-CC$^{13}$CH$_2$] ratio is determined to be $61pm11$. The [c-C$_3$H$_2$]/[c-$^{13}$CCCH$_2$] and [c-C$_3$H$_2$]/[c-CC$^{13}$CH$_2$] ratios expected from the elemental $^{12}$C/$^{13}$C ratio are 60-70 and 30-35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C$_3$H$_2$. Hence, this observation further confirms the dilution of the $^{13}$C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of $^{13}$C$^+$ in the gas-phase C$^+$ due to the isotope exchange reaction: $mathrm{^{13}C^++COrightarrow{}^{13}CO+C^+}$. Moreover, the abundances of the two $^{13}$C isotopic species are different from each other. The ratio of c-$mathrm{^{13}CCCH_2}$ species relative to c-$mathrm{CC^{13}CH_2}$ is determined to be $0.20pm0.05$. If $^{13}$C were randomly substituted for the three carbon atoms, the [c-$mathrm{^{13}CCCH_2}$]/[c-$mathrm{CC^{13}CH_2}$] ratio would be 0.5. Hence, the observed ratio indicates that c-$mathrm{CC^{13}CH_2}$ exists more favorably. Possible origins of the different abundances are discussed.
We have analyzed the Atacama Large Millimeter/submillimeter Array (ALMA) cycle 2 data of band 6 toward the G345.4938+01.4677 massive young protostellar object (G345.5+1.47 MYSO) in the IRAS 16562--3959 high-mass star-forming region with an angular resolution of $sim 0.3$, corresponding to $sim 760$ au. We spatially resolve the central region which consists of three prominent molecular emission cores. A hypercompact (HC) H$_{rm {II}}$ region (Core A) and two molecule-rich cores (Core B and Core C) are identified using the moment zero images of the H30$alpha$ line and a CH$_{3}$OH line, respectively. Various oxygen-bearing complex organic molecules (COMs), such as (CH$_{3}$)$_{2}$CO and CH$_{3}$OCHO, have been detected toward the positions of Core B and Core C, while nitrogen-bearing species, CH$_{3}$CN, HC$_{3}$N and its $^{13}$C isotopologues, have been detected toward all of the cores. We discuss the formation mechanisms of H$_{2}$CO by comparing the spatial distribution of C$^{18}$O with that of H$_{2}$CO. The $^{33}$SO emission, on the other hand, shows a ring-like structure surrounding Core A, and it peaks on the outer edge of the H30$alpha$ emission region. These results imply that SO is enhanced in a shock produced by the expanding motion of the ionized region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا