Do you want to publish a course? Click here

Bottom-Up Human Pose Estimation by Ranking Heatmap-Guided Adaptive Keypoint Estimates

75   0   0.0 ( 0 )
 Added by Ke Sun
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The typical bottom-up human pose estimation framework includes two stages, keypoint detection and grouping. Most existing works focus on developing grouping algorithms, e.g., associative embedding, and pixel-wise keypoint regression that we adopt in our approach. We present several schemes that are rarely or unthoroughly studied before for improving keypoint detection and grouping (keypoint regression) performance. First, we exploit the keypoint heatmaps for pixel-wise keypoint regression instead of separating them for improving keypoint regression. Second, we adopt a pixel-wise spatial transformer network to learn adaptive representations for handling the scale and orientation variance to further improve keypoint regression quality. Last, we present a joint shape and heatvalue scoring scheme to promote the estimated poses that are more likely to be true poses. Together with the tradeoff heatmap estimation loss for balancing the background and keypoint pixels and thus improving heatmap estimation quality, we get the state-of-the-art bottom-up human pose estimation result. Code is available at https://github.com/HRNet/HRNet-Bottom-up-Pose-Estimation.



rate research

Read More

Heatmap regression has become the most prevalent choice for nowadays human pose estimation methods. The ground-truth heatmaps are usually constructed via covering all skeletal keypoints by 2D gaussian kernels. The standard deviations of these kernels are fixed. However, for bottom-up methods, which need to handle a large variance of human scales and labeling ambiguities, the current practice seems unreasonable. To better cope with these problems, we propose the scale-adaptive heatmap regression (SAHR) method, which can adaptively adjust the standard deviation for each keypoint. In this way, SAHR is more tolerant of various human scales and labeling ambiguities. However, SAHR may aggravate the imbalance between fore-background samples, which potentially hurts the improvement of SAHR. Thus, we further introduce the weight-adaptive heatmap regression (WAHR) to help balance the fore-background samples. Extensive experiments show that SAHR together with WAHR largely improves the accuracy of bottom-up human pose estimation. As a result, we finally outperform the state-of-the-art model by +1.5AP and achieve 72.0AP on COCO test-dev2017, which is com-arable with the performances of most top-down methods. Source codes are available at https://github.com/greatlog/SWAHR-HumanPose.
We propose a simple yet reliable bottom-up approach with a good trade-off between accuracy and efficiency for the problem of multi-person pose estimation. Given an image, we employ an Hourglass Network to infer all the keypoints from different persons indiscriminately as well as the guiding offsets connecting the adjacent keypoints belonging to the same persons. Then, we greedily group the candidate keypoints into multiple human poses (if any), utilizing the predicted guiding offsets. And we refer to this process as greedy offset-guided keypoint grouping (GOG). Moreover, we revisit the encoding-decoding method for the multi-person keypoint coordinates and reveal some important facts affecting accuracy. Experiments have demonstrated the obvious performance improvements brought by the introduced components. Our approach is comparable to the state of the art on the challenging COCO dataset under fair conditions. The source code and our pre-trained model are publicly available online.
Human pose estimation deeply relies on visual clues and anatomical constraints between parts to locate keypoints. Most existing CNN-based methods do well in visual representation, however, lacking in the ability to explicitly learn the constraint relationships between keypoints. In this paper, we propose a novel approach based on Token representation for human Pose estimation~(TokenPose). In detail, each keypoint is explicitly embedded as a token to simultaneously learn constraint relationships and appearance cues from images. Extensive experiments show that the small and large TokenPose models are on par with state-of-the-art CNN-based counterparts while being more lightweight. Specifically, our TokenPose-S and TokenPose-L achieve $72.5$ AP and $75.8$ AP on COCO validation dataset respectively, with significant reduction in parameters ($downarrow80.6%$; $downarrow$ $56.8%$) and GFLOPs ($downarrow$ $75.3%$; $downarrow$ $24.7%$). Code is publicly available.
Monocular 3D human-pose estimation from static images is a challenging problem, due to the curse of dimensionality and the ill-posed nature of lifting 2D-to-3D. In this paper, we propose a Deep Conditional Variational Autoencoder based model that synthesizes diverse anatomically plausible 3D-pose samples conditioned on the estimated 2D-pose. We show that CVAE-based 3D-pose sample set is consistent with the 2D-pose and helps tackling the inherent ambiguity in 2D-to-3D lifting. We propose two strategies for obtaining the final 3D pose- (a) depth-ordering/ordinal relations to score and weight-average the candidate 3D-poses, referred to as OrdinalScore, and (b) with supervision from an Oracle. We report close to state of-the-art results on two benchmark datasets using OrdinalScore, and state-of-the-art results using the Oracle. We also show that our pipeline yields competitive results without paired image-to-3D annotations. The training and evaluation code is available at https://github.com/ssfootball04/generative_pose.
The 2D heatmap representation has dominated human pose estimation for years due to its high performance. However, heatmap-based approaches have some drawbacks: 1) The performance drops dramatically in the low-resolution images, which are frequently encountered in real-world scenarios. 2) To improve the localization precision, multiple upsample layers may be needed to recover the feature map resolution from low to high, which are computationally expensive. 3) Extra coordinate refinement is usually necessary to reduce the quantization error of downscaled heatmaps. To address these issues, we propose a textbf{Sim}ple yet promising textbf{D}isentangled textbf{R}epresentation for keypoint coordinate (emph{SimDR}), reformulating human keypoint localization as a task of classification. In detail, we propose to disentangle the representation of horizontal and vertical coordinates for keypoint location, leading to a more efficient scheme without extra upsampling and refinement. Comprehensive experiments conducted over COCO dataset show that the proposed emph{heatmap-free} methods outperform emph{heatmap-based} counterparts in all tested input resolutions, especially in lower resolutions by a large margin. Code will be made publicly available at url{https://github.com/leeyegy/SimDR}.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا