Do you want to publish a course? Click here

Greedy Offset-Guided Keypoint Grouping for Human Pose Estimation

82   0   0.0 ( 0 )
 Added by Jia Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a simple yet reliable bottom-up approach with a good trade-off between accuracy and efficiency for the problem of multi-person pose estimation. Given an image, we employ an Hourglass Network to infer all the keypoints from different persons indiscriminately as well as the guiding offsets connecting the adjacent keypoints belonging to the same persons. Then, we greedily group the candidate keypoints into multiple human poses (if any), utilizing the predicted guiding offsets. And we refer to this process as greedy offset-guided keypoint grouping (GOG). Moreover, we revisit the encoding-decoding method for the multi-person keypoint coordinates and reveal some important facts affecting accuracy. Experiments have demonstrated the obvious performance improvements brought by the introduced components. Our approach is comparable to the state of the art on the challenging COCO dataset under fair conditions. The source code and our pre-trained model are publicly available online.



rate research

Read More

74 - Ke Sun , Zigang Geng , Depu Meng 2020
The typical bottom-up human pose estimation framework includes two stages, keypoint detection and grouping. Most existing works focus on developing grouping algorithms, e.g., associative embedding, and pixel-wise keypoint regression that we adopt in our approach. We present several schemes that are rarely or unthoroughly studied before for improving keypoint detection and grouping (keypoint regression) performance. First, we exploit the keypoint heatmaps for pixel-wise keypoint regression instead of separating them for improving keypoint regression. Second, we adopt a pixel-wise spatial transformer network to learn adaptive representations for handling the scale and orientation variance to further improve keypoint regression quality. Last, we present a joint shape and heatvalue scoring scheme to promote the estimated poses that are more likely to be true poses. Together with the tradeoff heatmap estimation loss for balancing the background and keypoint pixels and thus improving heatmap estimation quality, we get the state-of-the-art bottom-up human pose estimation result. Code is available at https://github.com/HRNet/HRNet-Bottom-up-Pose-Estimation.
Human pose estimation deeply relies on visual clues and anatomical constraints between parts to locate keypoints. Most existing CNN-based methods do well in visual representation, however, lacking in the ability to explicitly learn the constraint relationships between keypoints. In this paper, we propose a novel approach based on Token representation for human Pose estimation~(TokenPose). In detail, each keypoint is explicitly embedded as a token to simultaneously learn constraint relationships and appearance cues from images. Extensive experiments show that the small and large TokenPose models are on par with state-of-the-art CNN-based counterparts while being more lightweight. Specifically, our TokenPose-S and TokenPose-L achieve $72.5$ AP and $75.8$ AP on COCO validation dataset respectively, with significant reduction in parameters ($downarrow80.6%$; $downarrow$ $56.8%$) and GFLOPs ($downarrow$ $75.3%$; $downarrow$ $24.7%$). Code is publicly available.
66 - Sheng Jin , Wentao Liu , Enze Xie 2020
Multi-person pose estimation is challenging because it localizes body keypoints for multiple persons simultaneously. Previous methods can be divided into two streams, i.e. top-down and bottom-up methods. The top-down methods localize keypoints after human detection, while the bottom-up methods localize keypoints directly and then cluster/group them for different persons, which are generally more efficient than top-down methods. However, in existing bottom-up methods, the keypoint grouping is usually solved independently from keypoint detection, making them not end-to-end trainable and have sub-optimal performance. In this paper, we investigate a new perspective of human part grouping and reformulate it as a graph clustering task. Especially, we propose a novel differentiable Hierarchical Graph Grouping (HGG) method to learn the graph grouping in bottom-up multi-person pose estimation task. Moreover, HGG is easily embedded into main-stream bottom-up methods. It takes human keypoint candidates as graph nodes and clusters keypoints in a multi-layer graph neural network model. The modules of HGG can be trained end-to-end with the keypoint detection network and is able to supervise the grouping process in a hierarchical manner. To improve the discrimination of the clustering, we add a set of edge discriminators and macro-node discriminators. Extensive experiments on both COCO and OCHuman datasets demonstrate that the proposed method improves the performance of bottom-up pose estimation methods.
259 - Kun Li , Jinsong Zhang , Yebin Liu 2020
Human pose transfer, which aims at transferring the appearance of a given person to a target pose, is very challenging and important in many applications. Previous work ignores the guidance of pose features or only uses local attention mechanism, leading to implausible and blurry results. We propose a new human pose transfer method using a generative adversarial network (GAN) with simplified cascaded blocks. In each block, we propose a pose-guided non-local attention (PoNA) mechanism with a long-range dependency scheme to select more important regions of image features to transfer. We also design pre-posed image-guided pose feature update and post-posed pose-guided image feature update to better utilize the pose and image features. Our network is simple, stable, and easy to train. Quantitative and qualitative results on Market-1501 and DeepFashion datasets show the efficacy and efficiency of our model. Compared with state-of-the-art methods, our model generates sharper and more realistic images with rich details, while having fewer parameters and faster speed. Furthermore, our generated images can help to alleviate data insufficiency for person re-identification.
93 - ZiFan Chen , Xin Qin , Chao Yang 2021
The existing human pose estimation methods are confronted with inaccurate long-distance regression or high computational cost due to the complex learning objectives. This work proposes a novel deep learning framework for human pose estimation called composite localization to divide the complex learning objective into two simpler ones: a sparse heatmap to find the keypoints approximate location and two short-distance offsetmaps to obtain its final precise coordinates. To realize the framework, we construct two types of composite localization networks: CLNet-ResNet and CLNet-Hourglass. We evaluate the networks on three benchmark datasets, including the Leeds Sports Pose dataset, the MPII Human Pose dataset, and the COCO keypoints detection dataset. The experimental results show that our CLNet-ResNet50 outperforms SimpleBaseline by 1.14% with about 1/2 GFLOPs. Our CLNet-Hourglass outperforms the original stacked-hourglass by 4.45% on COCO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا