Do you want to publish a course? Click here

Multiple Stellar Populations of Globular Clusters from Homogeneous Ca-CN-CH-NH Photometry. VI. M3 (NGC 5272) is not a Prototypical Normal Globular Cluster

96   0   0.0 ( 0 )
 Added by Jae-Woo Lee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Ca-CN-CH-NH photometry for the well-known globular cluster (GC) M3 (NGC 5272). We show new evidence for two M3 populations with distinctly different carbon and nitrogen abundances, seen in a sharp division between CN-weak and CN-strong red-giant branches (RGBs) in M3. The CN-strong population shows a C-N anticorrelation that is a natural consequence of the CN cycle, while the CN-weak population shows no or a weak C-N anticorrelation. Additionally, the CN-weak population exhibits an elongated spatial distribution that is likely linked to its fast rotation. Our derived metallicity reveals bimodal metallicity distributions in both populations, with $langle$[Fe/H]$rangleapprox-$1.60 and $-$1.45, which appear to be responsible for the discrete double RGB bumps in the CN-weak and the large $W^{1G}_{F275W-F814W}$ range. From this discovery, we propose that M3 consists of two GCs, namely the C1 (23%, $langle$[Fe/H]$rangleapprox-1.60$) and C2 (77%, $langle$[Fe/H]$rangleapprox-1.45$), each of which has its own C-N anticorrelation and structural and kinematical property, which is a strong indication of independent systems in M3. The fractions of the CN-weak population for both the C1 and C2 are high compared to Galactic GCs but they are in good agreement with GCs in Magellanic Clouds. It is believed that M3 is a merger remnant of the two GCs, most likely in a dwarf galaxy environment, and accreted to our Galaxy later in time. This is consistent with recent proposals of an ex-situ origin of M3.



rate research

Read More

235 - M. Catelan 2009
It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is the rule, rather than the exception, among globular star clusters. An important prediction of this helium enhancement scenario is that the helium-enhanced blue horizontal branch (HB) stars should be brighter than the red HB stars which are not helium-enhanced. In this Letter, we test this prediction in the case of the Galactic globular cluster M3 (NGC 5272), for which the helium-enhancement scenario predicts helium enhancements of > 0.02 in virtually all blue HB stars. Using high-precision Stroemgren photometry and spectroscopic gravities for blue HB stars, we find that any helium enhancement among most of the clusters blue HB stars is very likely less than 0.01, thus ruling out the much higher helium enhancements that have been proposed in the literature.
250 - Eugenio Carretta 2021
NGC 4833 is a metal-poor Galactic globular cluster (GC) whose multiple stellar populations present an extreme chemical composition. The Na-O anti-correlation is quite extended, which is in agreement with the long tail on the blue horizontal branch, and the large star-to-star variations in the [Mg/Fe] ratio span more than 0.5 dex. Recently, significant excesses of Ca and Sc with respect to field stars of a similar metallicity were also found, signaling the production of species forged in H-burning at a very high temperature in the polluters of the first generation in this cluster. Since an enhancement of potassium is also expected under these conditions, we tested this scenario by analysing intermediate resolution spectra of 59 cluster stars including the K I resonance line at 7698.98 A. We found a wide spread of K abundances, anti-correlated to Mg and O abundances, as previously also observed in NGC 2808. The abundances of K are found to be correlated to those of Na, Ca, and Sc. Overall, this chemical pattern confirms that NGC 4833 is one of the relatively few GCs where the self-enrichment from first generation polluters occurred at such high temperatures that proton-capture reactions were able to proceed up to heavier species such as K and possibly Ca. The spread in K observed in GCs appears to be a function of a linear combination of cluster total luminosity and metallicity, as other chemical signatures of multiple stellar populations in GCs.
Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and velocity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC0104 (47Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC0288, NGC5904 (M5), NGC6121 (M4), NGC6752, NGC6838 (M71) and further explore NGC0104. Among the analyzed clusters only NGC0104 and NGC5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC5904 exhibit different rotation curves.
Evidence that the multiple populations (MPs) are common properties of globular clusters (GCs) is accumulated over the past decades from clusters in the Milky Way and in its satellites. This finding has revived GC research, and suggested that their formation at high redshift must have been a much-more complex phenomenon than imagined before. However, most information on MPs is limited to nearby GCs. The main limitation is that most studies on MPs rely on resolved stars, facing a major challenge to investigate the MP phenomenon in distant galaxies. Here we search for integrated colors of old GCs that are sensitive to the multiple-population phenomenon. To do this, we exploit integrated magnitudes of simulated GCs with MPs, and multi-band Hubble Space Telescope photometry of 56 Galactic GCs, where MPs are widely studied, and characterized as part of the UV Legacy Survey of Galactic GCs. We find that both integrated $C_{rm F275W,F336W,F438W}$ and $m_{rm F275W}-m_{rm F814W}$ colors strongly correlate with the iron abundance of the host GC. In second order, the pseudo two-color diagram built with these integrated colors is sensitive to the MP phenomenon. In particular, once removed the dependence from cluster metallicity, the color residuals depend on the maximum internal helium variation within GCs and on the fraction of second-generation stars. This diagram, which we define here for Galactic GCs, has the potential of detecting and characterizing MPs from integrated photometry of old GCs, thus providing the possibility to extend their investigation outside the Local Group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا