Do you want to publish a course? Click here

Constraints on Helium Enhancement in the Globular Cluster M3 (NGC 5272): The Horizontal Branch Test

235   0   0.0 ( 0 )
 Added by Marcio Catelan
 Publication date 2009
  fields Physics
and research's language is English
 Authors M. Catelan




Ask ChatGPT about the research

It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is the rule, rather than the exception, among globular star clusters. An important prediction of this helium enhancement scenario is that the helium-enhanced blue horizontal branch (HB) stars should be brighter than the red HB stars which are not helium-enhanced. In this Letter, we test this prediction in the case of the Galactic globular cluster M3 (NGC 5272), for which the helium-enhancement scenario predicts helium enhancements of > 0.02 in virtually all blue HB stars. Using high-precision Stroemgren photometry and spectroscopic gravities for blue HB stars, we find that any helium enhancement among most of the clusters blue HB stars is very likely less than 0.01, thus ruling out the much higher helium enhancements that have been proposed in the literature.



rate research

Read More

We present the results obtained from the UV photometry of the globular cluster NGC 1261 using Far-UV (FUV) and Near-UV (NUV) images acquired with the Ultraviolet Imaging Telescope (UVIT) onboard the Astrosat satellite. We utilized the UVIT data combined with HST, GAIA, and ground-based optical photometric data to construct the different UV colour-magnitude diagrams (CMDs). We detected blue HB (BHB), and two extreme HB (EHB) stars in FUV, whereas full HB, i.e., red HB (RHB), BHB as well as EHB is detected in NUV CMDs. The 2 EHB stars, identified in both NUV and FUV, are confirmed members of the cluster. The HB stars form a tight sequence in UV-optical CMDs, which is almost aligned with Padova isochrones. This study sheds light on the significance of UV imaging to probe the HB morphology in GCs.
We present Ca-CN-CH-NH photometry for the well-known globular cluster (GC) M3 (NGC 5272). We show new evidence for two M3 populations with distinctly different carbon and nitrogen abundances, seen in a sharp division between CN-weak and CN-strong red-giant branches (RGBs) in M3. The CN-strong population shows a C-N anticorrelation that is a natural consequence of the CN cycle, while the CN-weak population shows no or a weak C-N anticorrelation. Additionally, the CN-weak population exhibits an elongated spatial distribution that is likely linked to its fast rotation. Our derived metallicity reveals bimodal metallicity distributions in both populations, with $langle$[Fe/H]$rangleapprox-$1.60 and $-$1.45, which appear to be responsible for the discrete double RGB bumps in the CN-weak and the large $W^{1G}_{F275W-F814W}$ range. From this discovery, we propose that M3 consists of two GCs, namely the C1 (23%, $langle$[Fe/H]$rangleapprox-1.60$) and C2 (77%, $langle$[Fe/H]$rangleapprox-1.45$), each of which has its own C-N anticorrelation and structural and kinematical property, which is a strong indication of independent systems in M3. The fractions of the CN-weak population for both the C1 and C2 are high compared to Galactic GCs but they are in good agreement with GCs in Magellanic Clouds. It is believed that M3 is a merger remnant of the two GCs, most likely in a dwarf galaxy environment, and accreted to our Galaxy later in time. This is consistent with recent proposals of an ex-situ origin of M3.
We present a new set of horizontal-branch (HB) models computed with the MESA stellar evolution code. The models adopt $alpha$-enhanced cite{ags09} metals mixtures and include the gravitational settling of He. They are used in our HB population synthesis tool to generate theoretical distributions of HB stars in order to describe the multiple stellar populations in the globular clusters 47Tuc, M3, and M13. The observed HB in 47Tuc is reproduced very well by our simulations for [Fe/H] $= -0.70$ and [$alpha$/Fe] $= +0.4$ if the initial helium mass fraction varies by $Delta Y_0 sim 0.03$ and approximately 21%, 37%, and 42% of the stars have $Y_0 = 0.257$, 0.270, and 0.287, respectively. These simulations yield $(m-M)_V = 13.27$, implying an age near 13.0 Gyr. In the case of M3 and M13, our synthetic HBs for [Fe/H] $= -1.55$ and [$alpha$/Fe] $= 0.4$ match the observed ones quite well if M3 has $Delta Y_0 sim 0.01$ and $(m-M)_V = 15.02$, resulting in an age of 12.6 Gyr, whereas M13 has $Delta Y_0 sim 0.08$ and $(m-M)_V = 14.42$, implying an age of 12.9 Gyr. Mass loss during giant-branch evolution and $Delta Y_0$ appear to be the primary second parameters for M3 and M13. New observations for 7 of the 9 known RR Lyrae in M13 are also reported. Surprisingly, periods predicted for the $c$-type variables tend to be too high (by up to $sim 0.1$~d).
We obtain stringent constraints on the actual efficiency of mass loss for red giant branch stars in the Galactic globular cluster 47 Tuc, by comparing synthetic modeling based on stellar evolution tracks with the observed distribution of stars along the horizontal branch in the colour-magnitude-diagram. We confirm that the observed, wedge-shaped distribution of the horizontal branch can be reproduced only by accounting for a range of initial He abundances --in agreement with inferences from the analysis of the main sequence-- and a red giant branch mass loss with a small dispersion. We have carefully investigated several possible sources of uncertainty that could affect the results of the horizontal branch modeling, stemming from uncertainties in both stellar model computations and the cluster properties such as heavy element abundances, reddening and age. We determine a firm lower limit of ~0.17$Mo for the mass lost by red giant branch stars, corresponding to horizontal branch stellar masses between ~0.65Mo and ~0.73Mo (the range driven by the range of initial helium abundances). We also derive that in this cluster the amount of mass lost along the asymptotic giant branch stars is comparable to the mass lost during the previous red giant branch phase. These results confirm for this cluster the disagreement between colour-magnitude-diagram analyses and inferences from recent studies of the dynamics of the cluster stars, that predict a much less efficient red giant branch mass loss. A comparison between the results from these two techniques applied to other clusters is required, to gain more insights about the origin of this disagreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا