Do you want to publish a course? Click here

Potassium abundances in multiple stellar populations of the globular cluster NGC 4833

251   0   0.0 ( 0 )
 Added by Eugenio Carretta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 4833 is a metal-poor Galactic globular cluster (GC) whose multiple stellar populations present an extreme chemical composition. The Na-O anti-correlation is quite extended, which is in agreement with the long tail on the blue horizontal branch, and the large star-to-star variations in the [Mg/Fe] ratio span more than 0.5 dex. Recently, significant excesses of Ca and Sc with respect to field stars of a similar metallicity were also found, signaling the production of species forged in H-burning at a very high temperature in the polluters of the first generation in this cluster. Since an enhancement of potassium is also expected under these conditions, we tested this scenario by analysing intermediate resolution spectra of 59 cluster stars including the K I resonance line at 7698.98 A. We found a wide spread of K abundances, anti-correlated to Mg and O abundances, as previously also observed in NGC 2808. The abundances of K are found to be correlated to those of Na, Ca, and Sc. Overall, this chemical pattern confirms that NGC 4833 is one of the relatively few GCs where the self-enrichment from first generation polluters occurred at such high temperatures that proton-capture reactions were able to proceed up to heavier species such as K and possibly Ca. The spread in K observed in GCs appears to be a function of a linear combination of cluster total luminosity and metallicity, as other chemical signatures of multiple stellar populations in GCs.



rate research

Read More

274 - Eugenio Carretta 2018
We observed a sample of 90 red giant branch (RGB) stars in NGC 2808 using FLAMES/GIRAFFE and the high resolution grating with the set up HR21. These stars have previous accurate atmospheric parameters and abundances of light elements. We derived aluminium abundances for them from the strong doublet Al I 8772-8773 Angstrom as in previous works of our group. In addition, we were able to estimate the relative CN abundances for 89 of the stars from the strength of a large number of CN features. When adding self consistent abundances from previous UVES spectra analysed by our team, we gathered [Al/Fe] ratios for a total of 108 RGB stars in NGC 2808. The full dataset of proton-capture elements is used to explore in details the five spectroscopically detected discrete components in this globular cluster. We found that different classes of polluters are required to reproduce the (anti)-correlations among all proton-capture elements in the populations P2, I1, and I2 with intermediate composition. This is in agreement with the detection of lithium in lower RGB second generation stars, requiring at least two kind of polluters. To have chemically homogeneous populations the best subdivision of our sample is into six components, as derived from statistical cluster analysis. By comparing different diagrams [element/Fe] vs [element/Fe] we show for the first time that a simple dilution model is not able to reproduce all the sub-populations in this cluster. Polluters of different masses are required. NGC 2808 is confirmed to be a tough challenge to any scenario for globular cluster formation.
157 - E. Carretta 2014
Our FLAMES survey of Na-O anticorrelation in globular clusters (GCs) is extended to NGC 4833, a metal-poor GC with a long blue tail on the horizontal branch (HB). We present the abundance analysis for a large sample of 78 red giants based on UVES and GIRAFFE spectra acquired at the ESO-VLT. We derived abundances of Na, O, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, La, Nd. This is the first extensive study of this cluster from high resolution spectroscopy. On the scale of our survey, the metallicity of NGC 4833 is [Fe/H]=-2.015+/-0.004+/-0.084 dex (rms=0.014 dex) from 12 stars observed with UVES, where the first error is from statistics and the second one refers to the systematic effects. The iron abundance in NGC 4833 is homogeneous at better than 6%. On the other hand, the light elements involved in proton-capture reactions at high temperature show the large star-to-star variations observed in almost all GCs studied so far. The Na-O anticorrelation in NGC 4833 is quite extended, as expected from the high temperatures reached by stars on the HB, and NGC 4833 contains a conspicuous fraction of stars with extreme [O/Na] ratios. More striking is the finding that large star-to-star variations are seen also for Mg, which spans a range of more than 0.5 dex in this GC. Depletions in Mg are correlated to the abundances of O and anti-correlated with Na, Al, and Si abundances. This pattern suggests the action of nuclear processing at unusually high temperatures, producing the extreme chemistry observed in the stellar generations of NGC 4833. This extreme changes are also seen in giants of the much more massive GCs M 54 and omega Cen, and our conclusion is that NGC 4833 has probably lost a conpicuous fraction of its original mass due to bulge shocking, as also indicated by its orbit.
159 - Eugenio Carretta 2012
We study the distribution of aluminum abundances among red giants in the peculiar globular cluster NGC 1851. Aluminum abundances were derived from the strong doublet Al I 8772-8773 A measured on intermediate resolution FLAMES spectra of 50 cluster stars acquired under the Gaia-ESO public survey. We coupled these abundances with previously derived abundance of O, Na, Mg to fully characterize the interplay of the NeNa and MgAl cycles of H-burning at high temperature in the early stellar generation in NGC 1851. The stars in our sample show well defined correlations between Al,Na and Si; Al is anticorrelated with O and Mg. The average value of the [Al/Fe] ratio steadily increases going from the first generation stars to the second generation populations with intermediate and extremely modified composition. We confirm on a larger database the results recently obtained by us (Carretta et al. 2011a): the pattern of abundances of proton-capture elements implies a moderate production of Al in NGC 1851. We find evidence of a statistically significant positive correlation between Al and Ba abundances in the more metal-rich component of red giants in NGC 1851.
We started a photometric survey using the WFC3/UVIS instrument onboard the Hubble Space Telescope to search for multiple populations within Magellanic Cloud star clusters at various ages. In this paper, we introduce this survey. As first results of this programme, we also present multi-band photometric observations of NGC 121 in different filters taken with the WFC3/UVIS and ACS/WFC instruments. We analyze the colour-magnitude diagram (CMD) of NGC 121, which is the only classical globular cluster within the Small Magellanic Cloud. Thereby, we use the pseudo-colour C_(F336W,F438W,F343N)=(F336W-F438W)-(F438W-F343N) to separate populations with different C and N abundances. We show that the red giant branch splits up in two distinct populations when using this colour combination. NGC 121 thus appears to be similar to Galactic globular clusters in hosting multiple populations. The fraction of enriched stars (N rich, C poor) in NGC 121 is about 32% +/- 3%, which is lower than the median fraction found in Milky Way globular clusters. The enriched population seems to be more centrally concentrated compared to the primordial one. These results are consistent with the recent results by Dalessandro et al. (2016). The morphology of the Horizontal Branch in a CMD using the optical filters F555W and F814W is best produced by a population with a spread in Helium of Delta(Y) =0.025+/-0.005.
We combine MUSE spectroscopy and Hubble Space Telescope ultraviolet (UV) photometry to perform a study of the chemistry and dynamics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Previous studies have revealed three stellar populations that not only vary in their light-element abundances, but also in their radial distributions, with concentration decreasing with increasing nitrogen enrichment. This remarkable trend, which sets M80 apart from the other Galactic globular clusters, points towards a complex formation and evolutionary history. To better understand how M80 formed and evolved, revealing its internal kinematics is key. We find that the most N-enriched population rotates faster than the other two populations at a 2 sigma confidence level. While our data further suggest that the intermediate population shows the least amount of rotation, this trend is rather marginal (1 - 2 sigma). Using axisymmetric Jeans models, we show that these findings can be explained from the radial distributions of the populations if they possess different angular momenta. Our findings suggest that the populations formed with primordial kinematical differences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا