Do you want to publish a course? Click here

Integrated photometry of multiple stellar populations in Globular Clusters

83   0   0.0 ( 0 )
 Added by Sohee Jang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Evidence that the multiple populations (MPs) are common properties of globular clusters (GCs) is accumulated over the past decades from clusters in the Milky Way and in its satellites. This finding has revived GC research, and suggested that their formation at high redshift must have been a much-more complex phenomenon than imagined before. However, most information on MPs is limited to nearby GCs. The main limitation is that most studies on MPs rely on resolved stars, facing a major challenge to investigate the MP phenomenon in distant galaxies. Here we search for integrated colors of old GCs that are sensitive to the multiple-population phenomenon. To do this, we exploit integrated magnitudes of simulated GCs with MPs, and multi-band Hubble Space Telescope photometry of 56 Galactic GCs, where MPs are widely studied, and characterized as part of the UV Legacy Survey of Galactic GCs. We find that both integrated $C_{rm F275W,F336W,F438W}$ and $m_{rm F275W}-m_{rm F814W}$ colors strongly correlate with the iron abundance of the host GC. In second order, the pseudo two-color diagram built with these integrated colors is sensitive to the MP phenomenon. In particular, once removed the dependence from cluster metallicity, the color residuals depend on the maximum internal helium variation within GCs and on the fraction of second-generation stars. This diagram, which we define here for Galactic GCs, has the potential of detecting and characterizing MPs from integrated photometry of old GCs, thus providing the possibility to extend their investigation outside the Local Group.



rate research

Read More

We investigate the multiple stellar populations of the globular clusters M3, M5, M13, and M71 using $g^prime$ and intermediate-band CN-$lambda 3883$ photometry obtained with the WIYN 0.9-m telescope on Kitt Peak. We find a strong correlation between red giant stars CN$-g^prime$ colors and their spectroscopic sodium abundances, thus demonstrating the efficacy of the two-filter system for stellar population studies. In all four clusters, the observed spread in red giant branch CN$-g^prime$ colors is wider than that expected from photometric uncertainty, confirming the well-known chemical inhomogeneity of these systems. M3 and M13 show clear evidence for a radial dependence in the CN-band strengths of its red giants, while the evidence for such a radial dependence of CN strengths in M5 is ambiguous. Our data suggest that the dynamically old, relatively metal-rich M71 system is well mixed, as it shows no evidence for chemical segregation. Finally, we measure the radial gradients in the integrated CN$-g^prime$ color of the clusters and find that such gradients are easily detectable in the integrated light. We suggest that photometric observations of color gradients within globular clusters throughout the Local Group can be used to characterize their multiple populations, and thereby constrain the formation history of globular clusters in different galactic environments.
We have calculated synthetic spectra for typical chemical element mixtures (i.e., a standard alpha-enhanced distribution, and distributions displaying CN and ONa anticorrelations) found in the various subpopulations harboured by Galactic globular clusters. From the spectra we have determined bolometric corrections to the standard Johnson-Cousins and Stroemgren filters, and finally predicted colours. These bolometric corrections and colour-transformations, coupled to our theoretical isochrones with the appropriate chemical composition, provide a complete and self-consistent set of theoretical predictions for the effect of abundance variations on the observed cluster CMD. CNO abundance variations affect mainly wavelengths shorter than 400 nm, due to the arise of molecular absorption bands in cooler atmospheres. As a consequence, colour and magnitude changes are largest in the blue filters, independently of using broad or intermediate bandpasses. Colour-magnitude diagrams involving uvy and UB filters (and their various possible colour combinations) are thus the ones best suited to infer photometrically the presence of multiple stellar generations in individual clusters. They are particularly sensitive to variations in the N abundance, with the largest variations affecting the Red Giant Branch (RGB) and lower Main Sequence (MS). BVI diagrams are expected to display multiple sequences only if the different populations are characterized by variations of the C+N+O sum and helium abundance, that lead to changes in luminosity and effective temperature, but leave the flux distribution above 400 nm practically unaffected. A variation of just the helium abundance, up to the level we investigate here, affects exclusively the interior structure of stars, and is largely irrelevant for the atmospheric structure and the resulting flux distribution in the whole wavelength range spanned by our analysis.
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and velocity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC0104 (47Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC0288, NGC5904 (M5), NGC6121 (M4), NGC6752, NGC6838 (M71) and further explore NGC0104. Among the analyzed clusters only NGC0104 and NGC5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC5904 exhibit different rotation curves.
208 - S. S. Larsen 2014
We use measurements of nitrogen abundances in red giants to search for multiple stellar populations in the four most metal-poor globular clusters (GCs) in the Fornax dwarf spheroidal galaxy (Fornax 1, 2, 3, and 5). New imaging in the F343N filter, obtained with the Wide Field Camera 3 on the Hubble Space Telescope, is combined with archival F555W and F814W observations to determine the strength of the NH band near 3370 AA. After accounting for observational errors, the spread in the F343N-F555W colors of red giants in the Fornax GCs is similar to that in M15 and corresponds to an abundance range of Delta([N/Fe])=2 dex, as observed also in several Galactic GCs. The spread in F555W-F814W is, instead, fully accounted for by observational errors. The stars with the reddest F343N-F555W colors (indicative of N-enhanced composition) have more centrally concentrated radial distributions in all four clusters, although the difference is not highly statistically significant within any individual cluster. From double-Gaussian fits to the color distributions we find roughly equal numbers of N-normal and N-enhanced stars (formally about 40% N-normal stars in Fornax 1, 3, and 5 and 60% in Fornax 2). We conclude that GC formation, in particular regarding the processes responsible for the origin of multiple stellar populations, appears to have operated similarly in the Milky Way and in the Fornax dSph. Combined with the high ratio of metal-poor GCs to field stars in the Fornax dSph, this places an important constraint on scenarios for the origin of multiple stellar populations in GCs.
Since the discovery of chemically peculiar stars in globular clusters in the last century, the study of multiple populations has become increasingly important, given that chemical inhomogeneity is found in almost all globular clusters. Despite various proposed theories attempting to explain this phenomenon, fitting all the observational evidence in globular clusters with one single theory remains notoriously difficult and currently unsuccessful. In order to improve existing models and motivate new ones, we are observing globular clusters at critical conditions, e.g., metal-rich end, metal-poor end, and low mass end. In this paper, we present our first attempt to investigate multiple populations in low mass globular clusters. We obtained low-resolution spectra around 4000 A of 30 members of the globular cluster Palomar 13 using OSIRIS/Multi-object spectrograph mounted at the Gran Telescopio Canarias. The membership of red giant branch stars is confirmed by the latest proper motions from Gaia DR2 and literature velocities. After comparing the measured CN and CH spectral indices with those of the stellar models, we found a clear sign of nitrogen variation among the red giant branch stars. Palomar 13 may be the lowest mass globular cluster showing multiple populations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا