Do you want to publish a course? Click here

Temporal Network Motifs: Models, Limitations, Evaluation

459   0   0.0 ( 0 )
 Added by Penghang Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Investigating the frequency and distribution of small subgraphs with a few nodes/edges, i.e., motifs, is an effective analysis method for static networks. Motif-driven analysis is also useful for temporal networks where the spectrum of motifs is significantly larger due to the additional temporal information on edges. This variety makes it challenging to design a temporal motif model that can consider all aspects of temporality. In the literature, previous works have introduced various models that handle different characteristics. In this work, we compare the existing temporal motif models and evaluate the facets of temporal networks that are overlooked in the literature. We first survey four temporal motif models and highlight their differences. Then, we evaluate the advantages and limitations of these models with respect to the temporal inducedness and timing constraints. In addition, we suggest a new lens, event pairs, to investigate temporal correlations. We believe that our comparative survey and extensive evaluation will catalyze the research on temporal network motif models.



rate research

Read More

Networks are a fundamental and flexible way of representing various complex systems. Many domains such as communication, citation, procurement, biology, social media, and transportation can be modeled as a set of entities and their relationships. Temporal networks are a specialization of general networks where the temporal evolution of the system is as important to understand as the structure of the entities and relationships. We present the Independent Temporal Motif (ITeM) to characterize temporal graphs from different domains. The ITeMs are edge-disjoint temporal motifs that can be used to model the structure and the evolution of the graph. For a given temporal graph, we produce a feature vector of ITeM frequencies and apply this distribution to the task of measuring the similarity of temporal graphs. We show that ITeM has higher accuracy than other motif frequency-based approaches. We define various metrics based on ITeM that reveal salient properties of a temporal network. We also present importance sampling as a method for efficiently estimating the ITeM counts. We evaluate our approach on both synthetic and real temporal networks.
Objective: The COVID-19 pandemic has created many challenges that need immediate attention. Various epidemiological and deep learning models have been developed to predict the COVID-19 outbreak, but all have limitations that affect the accuracy and robustness of the predictions. Our method aims at addressing these limitations and making earlier and more accurate pandemic outbreak predictions by (1) using patients EHR data from different counties and states that encode local disease status and medical resource utilization condition; (2) considering demographic similarity and geographical proximity between locations; and (3) integrating pandemic transmission dynamics into deep learning models. Materials and Methods: We proposed a spatio-temporal attention network (STAN) for pandemic prediction. It uses an attention-based graph convolutional network to capture geographical and temporal trends and predict the number of cases for a fixed number of days into the future. We also designed a physical law-based loss term for enhancing long-term prediction. STAN was tested using both massive real-world patient data and open source COVID-19 statistics provided by Johns Hopkins university across all U.S. counties. Results: STAN outperforms epidemiological modeling methods such as SIR and SEIR and deep learning models on both long-term and short-term predictions, achieving up to 87% lower mean squared error compared to the best baseline prediction model. Conclusions: By using information from real-world patient data and geographical data, STAN can better capture the disease status and medical resource utilization information and thus provides more accurate pandemic modeling. With pandemic transmission law based regularization, STAN also achieves good long-term prediction performance.
This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze the effect of network structure on diffusive dynamics such as the spread of infectious disease. We exhibit a representation for the reliability polynomial in terms of what we call {em structural motifs} that is well suited for reasoning about the effect of a networks structural properties on diffusion across the network. We illustrate by deriving several general results relating graph structure to dynamical phenomena.
Contact tracing has been extensively studied from different perspectives in recent years. However, there is no clear indication of why this intervention has proven effective in some epidemics (SARS) and mostly ineffective in some others (COVID-19). Here, we perform an exhaustive evaluation of random testing and contact tracing on novel superspreading random networks to try to identify which epidemics are more containable with such measures. We also explore the suitability of positive rates as a proxy of the actual infection statuses of the population. Moreover, we propose novel ideal strategies to explore the potential limits of both testing and tracing strategies. Our study counsels caution, both at assuming epidemic containment and at inferring the actual epidemic progress, with current testing or tracing strategies. However, it also brings a ray of light for the future, with the promise of the potential of novel testing strategies that can achieve great effectiveness.
81 - Yan Ge , Jun Ma , Li Zhang 2020
Higher-order proximity (HOP) is fundamental for most network embedding methods due to its significant effects on the quality of node embedding and performance on downstream network analysis tasks. Most existing HOP definitions are based on either homophily to place close and highly interconnected nodes tightly in embedding space or heterophily to place distant but structurally similar nodes together after embedding. In real-world networks, both can co-exist, and thus considering only one could limit the prediction performance and interpretability. However, there is no general and universal solution that takes both into consideration. In this paper, we propose such a simple yet powerful framework called homophily and heterophliy preserving network transformation (H2NT) to capture HOP that flexibly unifies homophily and heterophily. Specifically, H2NT utilises motif representations to transform a network into a new network with a hybrid assumption via micro-level and macro-level walk paths. H2NT can be used as an enhancer to be integrated with any existing network embedding methods without requiring any changes to latter methods. Because H2NT can sparsify networks with motif structures, it can also improve the computational efficiency of existing network embedding methods when integrated. We conduct experiments on node classification, structural role classification and motif prediction to show the superior prediction performance and computational efficiency over state-of-the-art methods. In particular, DeepWalk-based H2 NT achieves 24% improvement in terms of precision on motif prediction, while reducing 46% computational time compared to the original DeepWalk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا