Do you want to publish a course? Click here

On the rational motivic homotopy category

147   0   0.0 ( 0 )
 Added by Adeel A. Khan
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the structure of the rational motivic stable homotopy category over general base schemes. Our first class of results concerns the six operations: we prove absolute purity, stability of constructible objects, and Grothendieck-Verdier duality for SH_Q. Next, we prove that SH_Q is canonically SL-oriented; we compare SH_Q with the category of rational Milnor-Witt motives; and we relate the rational bivariant A^1-theory to Chow-Witt groups. These results are derived from analogous statements for the minus part of SH[1/2].



rate research

Read More

We prove a topological invariance statement for the Morel-Voevodsky motivic homotopy category, up to inverting exponential characteristics of residue fields. This implies in particular that SH[1/p] of characteristic p>0 schemes is invariant under passing to perfections. Among other applications we prove Grothendieck-Verdier duality in this context.
If $f:S to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal norm functor $f_otimes: mathcal H_*(S) tomathcal H_*(S)$, where $mathcal H_*(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite etale, we show that it stabilizes to a functor $f_otimes: mathcal{SH}(S) to mathcal{SH}(S)$, where $mathcal{SH}(S)$ is the $mathbb P^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a normed motivic spectrum, which is an enhancement of a motivic $E_infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendiecks Galois theory, with Betti realization, and with Voevodskys slice filtration; we prove that the norm functors categorify Rosts multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $Hmathbb Z$, the homotopy K-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $Hmathbb Z$ is a common refinement of Fulton and MacPhersons mutliplicative transfers on Chow groups and of Voevodskys power operations in motivic cohomology.
We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated bivariant theory in the sense of Fulton-MacPherson. We import the tools of Fultons intersection theory into this setting: (refined) Gysin maps, specialization maps, and formulas for excess intersections, self-intersections, and blow-ups. We also develop a theory of Euler classes of vector bundles in this setting. For the Milnor-Witt spectrum recently constructed by Deglise-Fasel, we get a bivariant theory extending the Chow-Witt groups of Barge-Morel, in the same way the higher Chow groups extend the classical Chow groups. As another application we prove a motivic Gauss-Bonnet formula, computing Euler characteristics in the motivic homotopy category.
97 - Marc Hoyois 2015
We introduce and study the homotopy theory of motivic spaces and spectra parametrized by quotient stacks [X/G], where G is a linearly reductive linear algebraic group. We extend to this equivariant setting the main foundational results of motivic homotopy theory: the (unstable) purity and gluing theorems of Morel and Voevodsky and the (stable) ambidexterity theorem of Ayoub. Our proof of the latter is different than Ayoubs and is of interest even when G is trivial. Using these results, we construct a formalism of six operations for equivariant motivic spectra, and we deduce that any cohomology theory for G-schemes that is represented by an absolute motivic spectrum satisfies descent for the cdh topology.
For each prime $p$, we define a $t$-structure on the category $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ of harmonic $mathbb{C}$-motivic left module spectra over $widehat{S^{0,0}}/tau$, whose MGL-homology has bounded Chow-Novikov degree, such that its heart is equivalent to the abelian category of $p$-completed $BP_*BP$-comodules that are concentrated in even degrees. We prove that $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ is equivalent to $mathcal{D}^b({{BP}_*{BP}text{-}mathbf{Comod}}^{{ev}})$ as stable $infty$-categories equipped with $t$-structures. As an application, for each prime $p$, we prove that the motivic Adams spectral sequence for $widehat{S^{0,0}}/tau$, which converges to the motivic homotopy groups of $widehat{S^{0,0}}/tau$, is isomorphic to the algebraic Novikov spectral sequence, which converges to the classical Adams-Novikov $E_2$-page for the sphere spectrum $widehat{S^0}$. This isomorphism of spectral sequences allows Isaksen and the second and third authors to compute the stable homotopy groups of spheres at least to the 90-stem, with ongoing computations into even higher dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا