No Arabic abstract
For each prime $p$, we define a $t$-structure on the category $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ of harmonic $mathbb{C}$-motivic left module spectra over $widehat{S^{0,0}}/tau$, whose MGL-homology has bounded Chow-Novikov degree, such that its heart is equivalent to the abelian category of $p$-completed $BP_*BP$-comodules that are concentrated in even degrees. We prove that $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ is equivalent to $mathcal{D}^b({{BP}_*{BP}text{-}mathbf{Comod}}^{{ev}})$ as stable $infty$-categories equipped with $t$-structures. As an application, for each prime $p$, we prove that the motivic Adams spectral sequence for $widehat{S^{0,0}}/tau$, which converges to the motivic homotopy groups of $widehat{S^{0,0}}/tau$, is isomorphic to the algebraic Novikov spectral sequence, which converges to the classical Adams-Novikov $E_2$-page for the sphere spectrum $widehat{S^0}$. This isomorphism of spectral sequences allows Isaksen and the second and third authors to compute the stable homotopy groups of spheres at least to the 90-stem, with ongoing computations into even higher dimensions.
We determine systematic regions in which the bigraded homotopy sheaves of the motivic sphere spectrum vanish.
For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and eta (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full and faithful embedding after eta-completion if a motivic version of Serres finiteness theorem is valid. We produce strong necessary conditions on the field extension L/k for this functor to be full and faithful. Along the way, we produce several results on the stable C_2-equivariant Betti realization functor and prove convergence theorems for the p-primary C_2-equivariant Adams spectral sequence.
We survey computations of stable motivic homotopy groups over various fields. The main tools are the motivic Adams spectral sequence, the motivic Adams-Novikov spectral sequence, and the effective slice spectral sequence. We state some projects for future study.
We give a method for computing the C_2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over R in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C_2-equivariant p-complete stable homotopy category as a localization of the p-complete cellular real motivic stable homotopy category.
We define an unstable equivariant motivic homotopy category for an algebraic group over a Noetherian base scheme. We show that equivariant algebraic $K$-theory is representable in the resulting homotopy category. Additionally, we establish homotopical purity and blow-up theorems for finite abelian groups.