No Arabic abstract
We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated bivariant theory in the sense of Fulton-MacPherson. We import the tools of Fultons intersection theory into this setting: (refined) Gysin maps, specialization maps, and formulas for excess intersections, self-intersections, and blow-ups. We also develop a theory of Euler classes of vector bundles in this setting. For the Milnor-Witt spectrum recently constructed by Deglise-Fasel, we get a bivariant theory extending the Chow-Witt groups of Barge-Morel, in the same way the higher Chow groups extend the classical Chow groups. As another application we prove a motivic Gauss-Bonnet formula, computing Euler characteristics in the motivic homotopy category.
We prove a topological invariance statement for the Morel-Voevodsky motivic homotopy category, up to inverting exponential characteristics of residue fields. This implies in particular that SH[1/p] of characteristic p>0 schemes is invariant under passing to perfections. Among other applications we prove Grothendieck-Verdier duality in this context.
If $f:S to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal norm functor $f_otimes: mathcal H_*(S) tomathcal H_*(S)$, where $mathcal H_*(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite etale, we show that it stabilizes to a functor $f_otimes: mathcal{SH}(S) to mathcal{SH}(S)$, where $mathcal{SH}(S)$ is the $mathbb P^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a normed motivic spectrum, which is an enhancement of a motivic $E_infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendiecks Galois theory, with Betti realization, and with Voevodskys slice filtration; we prove that the norm functors categorify Rosts multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $Hmathbb Z$, the homotopy K-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $Hmathbb Z$ is a common refinement of Fulton and MacPhersons mutliplicative transfers on Chow groups and of Voevodskys power operations in motivic cohomology.
Let F be a field of characteristic different than 2. We establish surjectivity of Balmers comparison map rho^* from the tensor triangular spectrum of the homotopy category of compact motivic spectra to the homogeneous Zariski spectrum of Milnor-Witt K-theory. We also comment on the tensor triangular geometry of compact cellular motivic spectra, producing in particular novel field spectra in this category. We conclude with a list of questions about the structure of the tensor triangular spectrum of the stable motivic homotopy category.
We introduce and study the homotopy theory of motivic spaces and spectra parametrized by quotient stacks [X/G], where G is a linearly reductive linear algebraic group. We extend to this equivariant setting the main foundational results of motivic homotopy theory: the (unstable) purity and gluing theorems of Morel and Voevodsky and the (stable) ambidexterity theorem of Ayoub. Our proof of the latter is different than Ayoubs and is of interest even when G is trivial. Using these results, we construct a formalism of six operations for equivariant motivic spectra, and we deduce that any cohomology theory for G-schemes that is represented by an absolute motivic spectrum satisfies descent for the cdh topology.
We give a method for computing the C_2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over R in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C_2-equivariant p-complete stable homotopy category as a localization of the p-complete cellular real motivic stable homotopy category.