Do you want to publish a course? Click here

Two qualitatively different superconducting phases under high pressure in single-crystalline CeNiGe$_{3}$

103   0   0.0 ( 0 )
 Added by Shunsaku Kitagawa
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the temperature dependence of resistivity in single-crystalline CeNiGe$_{3}$ under hydrostatic pressure in order to establish the characteristic pressure-temperature phase diagram. The transition temperature to AFM-I phase $T_{rm N1}$ = 5.5 K at ambient pressure initially increases with increasing pressure and has a maximum at $sim$ 3.0 GPa. Above 2.3 GPa, a clear zero-resistivity is observed (SC-I phase) and this superconducting (SC) state coexists with AFM-I phase. The SC-I phase suddenly disappears at 3.7 GPa simultaneously with the appearance of an additional kink anomaly corresponding to the phase transition to AFM-II phase. The AFM-II phase is continuously suppressed with further increasing pressure and disappears at $sim$ 6.5 GPa. In the narrow range near the critical pressure, an SC phase reappears (SC-II phase). A large initial slope of upper critical field $mu_0H_{rm c2}$ and non-Fermi liquid behavior indicate that the SC-II phase is mediated by antiferromagnetic fluctuations. On the other hand, the robust coexistence of the SC-I phase and AFM-I phase is unusual on the contrary to superconductivity near a quantum critical point on most of heavy-fermion compounds.



rate research

Read More

We report on the synthesis of superconducting single crystals of FeSe, and their characterization by X-ray diffraction, magnetization and resistivity. We have performed ac susceptibility measurements under high pressure in a hydrostatic liquid argon medium up to 14 GPa and we find that TC increases up to 33-36 K in all samples, but with slightly different pressure dependences on different samples. Above 12 GPa no traces of superconductivity are found in any sample. We have also performed a room temperature high pressure X-ray diffraction study up to 12 GPa on a powder sample, and we find that between 8.5 GPa and 12 GPa, the tetragonal PbO structure undergoes a structural transition to a hexagonal structure. This transition results in a volume decrease of about 16%, and is accompanied by the appearance of an intermediate, probably orthorhombic phase.
We report measurements of ac magnetic susceptibility $chi_{ac}$ and de Haas-van Alphen (dHvA) oscillations in KFe$_2$As$_2$ under high pressure up to 24.7 kbar. The pressure dependence of the superconducting transition temperature $T_c$ changes from negative to positive across $P_c sim 18$ kbar as previously reported. The ratio of the upper critical field to $T_c$, i.e, $B_{c2} / T_c$, is enhanced above $P_c$, and the shape of $chi_{ac}$ vs field curves qualitatively changes across $P_c$. DHvA oscillations smoothly evolve across $P_c$ and indicate no drastic change in the Fermi surface up to 24.7 kbar. Three dimensionality increases with pressure, while effective masses show decreasing trends. We suggest a crossover from a nodal to a full-gap $s$ wave as a possible explanation.
158 - C. Y. Guo , Y. Chen , M. Smidman 2015
We present a pressure study of the electrical resistivity, AC magnetic susceptibility and powder x-ray diffraction (XRD) of the newly discovered BiS$_2$-based superconductor EuBiS$_2$F. At ambient pressure, EuBiS$_2$F shows an anomaly in the resistivity at around $T_0approx 280$ K and a superconducting transition at $T_capprox 0.3$ K. Upon applying hydrostatic pressure, there is little change in $T_0$ but the amplitude of the resistive anomaly is suppressed, whereas there is a dramatic enhancement of $T_c$ from 0.3 K to about 8.6 K at a critical pressure of $p_c$ $approx{1.4}$ GPa. XRD measurements confirm that this enhancement of $T_c$ coincides with a structural phase transition from a tetragonal phase ($P4/nmm$) to a monoclinic phase ($P2_1$/m), which is similar to that observed in isostructural LaO$_{0.5}$F$_{0.5}$BiS$_2$. Our results suggest the presence of two different superconducting phases with distinct crystal structures in EuBiS$_2$F, which may be a general property of this family of BiS$_2$-based superconductors.
We report a novel superconducting (SC) and antiferromagnetic (AF) hybrid state in SrFe2As2 revealed by 75As nuclear magnetic resonance (NMR) experiments on a single crystal under highly hydrostatic pressure up to 7 GPa. The NMR spectra at 5.4 GPa indicate simultaneous development of the SC and AF orders below 30 K. The nuclear spin-lattice relaxation rate in the SC domains shows a substantial residual density of states, suggesting proximity effects due to spontaneous formation of a nano-scale SC/AF hybrid structure. This entangled behavior is a remarkable example of a self-organized heterogeneous structure in a clean system.
We report Shubnikov-de Haas (SdH) oscillation measurements on FeSe under high pressure up to $P$ = 16.1 kbar. We find a sudden change in SdH oscillations at the onset of the pressure-induced antiferromagnetism at $P$ $sim$ 8 kbar. We argue that this change can be attributed to a reconstruction of the Fermi surface by the antiferromagnetic order. The negative d$T_c$/d$P$ observed in a range between $P$ $sim$ 8 and 12 kbar may be explained by the reduction in the density of states due to the reconstruction. The ratio of the transition temperature to the effective Fermi energy remains high under high pressure: $k_BT_c/E_F$ $sim$ 0.1 even at $P$ = 16.1 kbar.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا