Do you want to publish a course? Click here

Two distinct superconducting states in KFe$_2$As$_2$ under high pressure

319   0   0.0 ( 0 )
 Added by Taichi Terashima
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report measurements of ac magnetic susceptibility $chi_{ac}$ and de Haas-van Alphen (dHvA) oscillations in KFe$_2$As$_2$ under high pressure up to 24.7 kbar. The pressure dependence of the superconducting transition temperature $T_c$ changes from negative to positive across $P_c sim 18$ kbar as previously reported. The ratio of the upper critical field to $T_c$, i.e, $B_{c2} / T_c$, is enhanced above $P_c$, and the shape of $chi_{ac}$ vs field curves qualitatively changes across $P_c$. DHvA oscillations smoothly evolve across $P_c$ and indicate no drastic change in the Fermi surface up to 24.7 kbar. Three dimensionality increases with pressure, while effective masses show decreasing trends. We suggest a crossover from a nodal to a full-gap $s$ wave as a possible explanation.



rate research

Read More

156 - C. Y. Guo , Y. Chen , M. Smidman 2015
We present a pressure study of the electrical resistivity, AC magnetic susceptibility and powder x-ray diffraction (XRD) of the newly discovered BiS$_2$-based superconductor EuBiS$_2$F. At ambient pressure, EuBiS$_2$F shows an anomaly in the resistivity at around $T_0approx 280$ K and a superconducting transition at $T_capprox 0.3$ K. Upon applying hydrostatic pressure, there is little change in $T_0$ but the amplitude of the resistive anomaly is suppressed, whereas there is a dramatic enhancement of $T_c$ from 0.3 K to about 8.6 K at a critical pressure of $p_c$ $approx{1.4}$ GPa. XRD measurements confirm that this enhancement of $T_c$ coincides with a structural phase transition from a tetragonal phase ($P4/nmm$) to a monoclinic phase ($P2_1$/m), which is similar to that observed in isostructural LaO$_{0.5}$F$_{0.5}$BiS$_2$. Our results suggest the presence of two different superconducting phases with distinct crystal structures in EuBiS$_2$F, which may be a general property of this family of BiS$_2$-based superconductors.
We report an angle-resolved photoemission spectroscopy (ARPES) study of KFe$_2$As$_2$ and CsFe$_2$As$_2$, revealing the existence of a van Hove singularity affecting the electronic properties. As a result of chemical pressure, we find a stronger three-dimensionality in KFe$_2$As$_2$ than in CsFe$_2$As$_2$, notably for the 3$d_{z^2}$ states responsible for the small three-dimensional hole-like Fermi surface pocket reported by quantum oscillations. Supported by first-principles calculations, our ARPES study shows that the van Hove singularity previously reported in KFe$_2$As$_2$ moves closer to the Fermi level under negative chemical pressure. This observation, which suggests that the large density-of-states accompanying the van Hove singularity contributes to the large Sommerfeld coefficient reported for the AFe$_2$As$_2$ (A = K, Rb, Cs) series, is also consistent with the evolution of the inelastic scattering revealed by transport under external pressure, thus offering a possible interpretation for the origin of the apparent change in the superconducting order parameter under pressure. We find that the coherent spectral weight decreases exponentially upon increasing temperature with a characteristic temperature $T^*$. We speculate how the low-energy location of the van Hove singularity and the presence of a low-energy peak in the phonon density-of-states can relate to the high-temperature crossover observed in various electronic and thermodynamic quantities.
192 - Swee K. Goh , Y. Nakai , K. Ishida 2010
Magnetic measurements on optimally doped single crystals of BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ ($xapprox0.35$) with magnetic fields applied along different crystallographic axes were performed under pressure, enabling the pressure evolution of coherence lengths and the anisotropy factor to be followed. Despite a decrease in the superconducting critical temperature, our studies reveal that the superconducting properties become more anisotropic under pressure. With appropriate scaling, we directly compare these properties with the values obtained for BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ as a function of phosphorus content.
High-quality K(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals have been grown by using KAs flux method. Instead of increasing the superconducting transition temperature $T_{rm c}$ through electron doping, we find that Co impurities rapidly suppress $T_{rm c}$ down to zero at only $x approx$ 0.04. Such an effective suppression of $T_{rm c}$ by impurities is quite different from that observed in Ba$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ with multiple nodeless superconducting gaps. Thermal conductivity measurements in zero field show that the residual linear term $kappa_0/T$ only change slightly with $3.4%$ Co doping, despite the sharp increase of scattering rate. The implications of these anomalous impurity effects are discussed.
The in-plane resistivity $rho$ and thermal conductivity $kappa$ of extremely overdoped KFe$_2$As$_2$ ($T_c$ = 3.0 K) single crystal were studied. It is found that $rho sim T^{1.5}$ at low temperature, a typical non-Fermi liquid behavior of electrons scattered by antiferromagnetic spin fluctuations. In zero field, we observed a large residual linear term $kappa_0/T$, about one third of the normal-state value. In low magnetic fields, $kappa_0/T(H)$ increases very fast. Such a behavior of $kappa_0/T$ mimics the d-wave cuprate superconductors, therefore provides clear evidence for nodes in the superconducting gap of KFe$_2$As$_2$. Based on the Fermi surface topology of KFe$_2$As$_2$, it is believed that the dominant intraband pairing via antiferromagnetic spin fluctuations results in the unconventional superconducting gap with nodes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا