Do you want to publish a course? Click here

Superconducting and normal phases of FeSe single crystals at high pressure

174   0   0.0 ( 0 )
 Added by Daniel Braithwaite
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the synthesis of superconducting single crystals of FeSe, and their characterization by X-ray diffraction, magnetization and resistivity. We have performed ac susceptibility measurements under high pressure in a hydrostatic liquid argon medium up to 14 GPa and we find that TC increases up to 33-36 K in all samples, but with slightly different pressure dependences on different samples. Above 12 GPa no traces of superconductivity are found in any sample. We have also performed a room temperature high pressure X-ray diffraction study up to 12 GPa on a powder sample, and we find that between 8.5 GPa and 12 GPa, the tetragonal PbO structure undergoes a structural transition to a hexagonal structure. This transition results in a volume decrease of about 16%, and is accompanied by the appearance of an intermediate, probably orthorhombic phase.



rate research

Read More

101 - Nan Zhou , Yue Sun , C. Y. Xi 2021
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state. This state is characterized by inhomogeneous superconductivity, where the Cooper pairs have finite center-of-mass momenta. Recently, the high-field phase has been observed in FeSe, and it was deemed to originate from the FFLO state. Here, we synthesized FeSe single crystals with different levels of disorders. The level of disorder is expressed by the ratio of the mean free path to the coherence length and ranges between 35 and 1.2. The upper critical field $B_{rm{c}2}$ was systematically studied over a wide range of temperatures, which went as low as $sim$ 0.5 K, and magnetic fields, which went up to $sim$ 38 T along the $c$ axis and in the $ab$ plane. In the high-field region parallel to the $ab$ plane, an unusual SC phase was confirmed in all the crystals, and the phase was found to be robust to disorders. This result suggests that the high-filed SC state in FeSe may not be a FFLO state, which should be sensitive to disorders.
We have measured the temperature dependence of resistivity in single-crystalline CeNiGe$_{3}$ under hydrostatic pressure in order to establish the characteristic pressure-temperature phase diagram. The transition temperature to AFM-I phase $T_{rm N1}$ = 5.5 K at ambient pressure initially increases with increasing pressure and has a maximum at $sim$ 3.0 GPa. Above 2.3 GPa, a clear zero-resistivity is observed (SC-I phase) and this superconducting (SC) state coexists with AFM-I phase. The SC-I phase suddenly disappears at 3.7 GPa simultaneously with the appearance of an additional kink anomaly corresponding to the phase transition to AFM-II phase. The AFM-II phase is continuously suppressed with further increasing pressure and disappears at $sim$ 6.5 GPa. In the narrow range near the critical pressure, an SC phase reappears (SC-II phase). A large initial slope of upper critical field $mu_0H_{rm c2}$ and non-Fermi liquid behavior indicate that the SC-II phase is mediated by antiferromagnetic fluctuations. On the other hand, the robust coexistence of the SC-I phase and AFM-I phase is unusual on the contrary to superconductivity near a quantum critical point on most of heavy-fermion compounds.
We report flux free growth of superconducting FeSe single crystals by an easy and versatile high temperature melt and slow cooling method for first time. The room temperature XRD on the surface of the piece of such obtained crystals showed single 101 plane of Beta-FeSe tetragonal phase. The bulk powder XRD, being obtained by crushing the part of crystal chunk showed majority tetragonal and minority FeSe hexagonal crystalline phases. Detailed HRTEM images along with SAED (selected area electron diffraction) showed the abundance of both majority and minority FeSe phases. Both transport (RT) and magnetization (MT) exhibited superconductivity at below around 10K. Interestingly, the magnetization signal of these crystals is dominated by the magnetism of minority magnetic phase, and hence the isothermal magnetization (MH) at 4K was seen to be ferromagnetic (FM) like. Transport (R-T) measurements under magnetic field showed superconductivity onset at below 12K, and R = 0 (Tc) at 9K. Superconducting transition temperature (Tc) decreases with applied field to around 6K at 7Tesla, with dTc/dH of 0.4K/Tesla, giving rise to an Hc2 value of around 50 Tesla, 30 Tesla and 20 Tesla for Rn = 90, 50 and 10 percent respectively. FeSe single crystal activation energy is calculated from Thermally Activated Flux Flow (TAFF) model which is found to decreases with field.
Single crystals of RbOs2O6 have been grown from Rb2O and Os in sealed quartz ampoules. The crystal structure has been identified at room temperature as cubic with the lattice constant a = 10.1242(12) A. The anisotropy of the tetrahedral and octahedral networks is lower and the displacement parameters of alkali metal atoms are smaller than for KOs2O6, so the rattling of the alkali atoms in RbOs2O6 is less pronounced. Superconducting properties of RbOs2O6 in the mixed state have been well described within the London approach and the Ginzburg-Landau parameter kappa(0) = 31 has been derived from the reversible magnetization. This parameter is field dependent and changes at low temperatures from kappa = 22 (low fields) to kappa = 31 at H_{c2}. The thermodynamic critical field H_{c}(0) = 1.3 kOe and the superconducting gap 2delta/k_{B}T_{c} = 3.2 have been estimated. These results together with slightly different H_{c2}(T) dependence obtained for crystals and polycrystalline RbOs2O6 proof evidently that this compound is a weak-coupling BCS-type superconductor close to the dirty limit.
The recently discovered (Rb,Cs)EuFe4As4 compounds exhibit an unusual combination of superconductivity (Tc = 35 K) and ferromagnetism (Tm = 15 K). We have performed a series of x-ray diffraction, ac magnetic susceptibility, dc magnetization, and electrical resistivity measurements on both RbEuFe4As4 and CsEuFe4As4 to pressures as high as 30 GPa. We find that the superconductivity onset is suppressed monotonically by pressure while the magnetic transition is enhanced at initial rates of dTm/dP = 1.7 K/GPa and 1.5 K/GPa for RbEuFe4As4 and CsEuFe4As4, respectively. Near 7 GPa, Tc onset and Tm become comparable. At higher pressures, signatures of bulk superconductivity gradually disappear. Room temperature x-ray diffraction measurements suggest the onset of a transition from tetragonal (T) to a half collapsed-tetragonal (hcT) phase at 10 GPa (RbEuFe4As4) and 12 GPa (CsEuFe4As4). The ability to tune Tc and Tm into coincidence with relatively modest pressures highlights (Rb,Cs)EuFe4As4 compounds as ideal systems to study the interplay of superconductivity and ferromagnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا