No Arabic abstract
Capturing visual image with a hyperspectral camera has been successfully applied to many areas due to its narrow-band imaging technology. Hyperspectral reconstruction from RGB images denotes a reverse process of hyperspectral imaging by discovering an inverse response function. Current works mainly map RGB images directly to corresponding spectrum but do not consider context information explicitly. Moreover, the use of encoder-decoder pair in current algorithms leads to loss of information. To address these problems, we propose a 4-level Hierarchical Regression Network (HRNet) with PixelShuffle layer as inter-level interaction. Furthermore, we adopt a residual dense block to remove artifacts of real world RGB images and a residual global block to build attention mechanism for enlarging perceptive field. We evaluate proposed HRNet with other architectures and techniques by participating in NTIRE 2020 Challenge on Spectral Reconstruction from RGB Images. The HRNet is the winning method of track 2 - real world images and ranks 3rd on track 1 - clean images. Please visit the project web page https://github.com/zhaoyuzhi/Hierarchical-Regression-Network-for-Spectral-Reconstruction-from-RGB-Images to try our codes and pre-trained models.
To reconstruct spectral signals from multi-channel observations, in particular trichromatic RGBs, has recently emerged as a promising alternative to traditional scanning-based spectral imager. It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use. To improve accuracy, data-driven algorithms have been proposed to retrieve the best response curves of existing RGB cameras, or even to design brand new three-channel response curves. Instead, this paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery, which stands out as an in-between solution with better trade-off between reconstruction accuracy and implementation complexity. We further propose a deep learning based spectral reconstruction method, which allows to recover the illumination spectrum as well. Experiment results with both synthetic and real images under daylight illumination have shown the benefits of our IR-cut filter tuning method and our illumination-aware spectral reconstruction method.
Hyperspectral imaging enables versatile applications due to its competence in capturing abundant spatial and spectral information, which are crucial for identifying substances. However, the devices for acquiring hyperspectral images are expensive and complicated. Therefore, many alternative spectral imaging methods have been proposed by directly reconstructing the hyperspectral information from lower-cost, more available RGB images. We present a thorough investigation of these state-of-the-art spectral reconstruction methods from the widespread RGB images. A systematic study and comparison of more than 25 methods has revealed that most of the data-driven deep learning methods are superior to prior-based methods in terms of reconstruction accuracy and quality despite lower speeds. This comprehensive review can serve as a fruitful reference source for peer researchers, thus further inspiring future development directions in related domains.
Machine learning technologies using deep neural networks (DNNs), especially convolutional neural networks (CNNs), have made automated, accurate, and fast medical image analysis a reality for many applications, and some DNN-based medical image analysis systems have even been FDA-cleared. Despite the progress, challenges remain to build DNNs as reliable as human expert doctors. It is known that DNN classifiers may not be robust to noises: by adding a small amount of noise to an input image, a DNN classifier may make a wrong classification of the noisy image (i.e., in-distribution adversarial sample), whereas it makes the right classification of the clean image. Another issue is caused by out-of-distribution samples that are not similar to any sample in the training set. Given such a sample as input, the output of a DNN will become meaningless. In this study, we investigated the in-distribution (IND) and out-of-distribution (OOD) adversarial robustness of a representative CNN for lumbar disk shape reconstruction from spine MR images. To study the relationship between dataset size and robustness to IND adversarial attacks, we used a data augmentation method to create training sets with different levels of shape variations. We utilized the PGD-based algorithm for IND adversarial attacks and extended it for OOD adversarial attacks to generate OOD adversarial samples for model testing. The results show that IND adversarial training can improve the CNN robustness to IND adversarial attacks, and larger training datasets may lead to higher IND robustness. However, it is still a challenge to defend against OOD adversarial attacks.
Hyperspectral imaging is one of the most promising techniques for intraoperative tissue characterisation. Snapshot mosaic cameras, which can capture hyperspectral data in a single exposure, have the potential to make a real-time hyperspectral imaging system for surgical decision-making possible. However, optimal exploitation of the captured data requires solving an ill-posed demosaicking problem and applying additional spectral corrections to recover spatial and spectral information of the image. In this work, we propose a deep learning-based image demosaicking algorithm for snapshot hyperspectral images using supervised learning methods. Due to the lack of publicly available medical images acquired with snapshot mosaic cameras, a synthetic image generation approach is proposed to simulate snapshot images from existing medical image datasets captured by high-resolution, but slow, hyperspectral imaging devices. Image reconstruction is achieved using convolutional neural networks for hyperspectral image super-resolution, followed by cross-talk and leakage correction using a sensor-specific calibration matrix. The resulting demosaicked images are evaluated both quantitatively and qualitatively, showing clear improvements in image quality compared to a baseline demosaicking method using linear interpolation. Moreover, the fast processing time of~45,ms of our algorithm to obtain super-resolved RGB or oxygenation saturation maps per image frame for a state-of-the-art snapshot mosaic camera demonstrates the potential for its seamless integration into real-time surgical hyperspectral imaging applications.
Segmentation of enhancing tumours or lesions from MRI is important for detecting new disease activity in many clinical contexts. However, accurate segmentation requires the inclusion of medical images (e.g., T1 post contrast MRI) acquired after injecting patients with a contrast agent (e.g., Gadolinium), a process no longer thought to be safe. Although a number of modality-agnostic segmentation networks have been developed over the past few years, they have been met with limited success in the context of enhancing pathology segmentation. In this work, we present HAD-Net, a novel offline adversarial knowledge distillation (KD) technique, whereby a pre-trained teacher segmentation network, with access to all MRI sequences, teaches a student network, via hierarchical adversarial training, to better overcome the large domain shift presented when crucial images are absent during inference. In particular, we apply HAD-Net to the challenging task of enhancing tumour segmentation when access to post-contrast imaging is not available. The proposed network is trained and tested on the BraTS 2019 brain tumour segmentation challenge dataset, where it achieves performance improvements in the ranges of 16% - 26% over (a) recent modality-agnostic segmentation methods (U-HeMIS, U-HVED), (b) KD-Net adapted to this problem, (c) the pre-trained student network and (d) a non-hierarchical version of the network (AD-Net), in terms of Dice scores for enhancing tumour (ET). The network also shows improvements in tumour core (TC) Dice scores. Finally, the network outperforms both the baseline student network and AD-Net in terms of uncertainty quantification for enhancing tumour segmentation based on the BraTs 2019 uncertainty challenge metrics. Our code is publicly available at: https://github.com/SaverioVad/HAD_Net