Do you want to publish a course? Click here

Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from RGB

151   0   0.0 ( 0 )
 Added by Bo Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

To reconstruct spectral signals from multi-channel observations, in particular trichromatic RGBs, has recently emerged as a promising alternative to traditional scanning-based spectral imager. It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use. To improve accuracy, data-driven algorithms have been proposed to retrieve the best response curves of existing RGB cameras, or even to design brand new three-channel response curves. Instead, this paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery, which stands out as an in-between solution with better trade-off between reconstruction accuracy and implementation complexity. We further propose a deep learning based spectral reconstruction method, which allows to recover the illumination spectrum as well. Experiment results with both synthetic and real images under daylight illumination have shown the benefits of our IR-cut filter tuning method and our illumination-aware spectral reconstruction method.



rate research

Read More

Capturing visual image with a hyperspectral camera has been successfully applied to many areas due to its narrow-band imaging technology. Hyperspectral reconstruction from RGB images denotes a reverse process of hyperspectral imaging by discovering an inverse response function. Current works mainly map RGB images directly to corresponding spectrum but do not consider context information explicitly. Moreover, the use of encoder-decoder pair in current algorithms leads to loss of information. To address these problems, we propose a 4-level Hierarchical Regression Network (HRNet) with PixelShuffle layer as inter-level interaction. Furthermore, we adopt a residual dense block to remove artifacts of real world RGB images and a residual global block to build attention mechanism for enlarging perceptive field. We evaluate proposed HRNet with other architectures and techniques by participating in NTIRE 2020 Challenge on Spectral Reconstruction from RGB Images. The HRNet is the winning method of track 2 - real world images and ranks 3rd on track 1 - clean images. Please visit the project web page https://github.com/zhaoyuzhi/Hierarchical-Regression-Network-for-Spectral-Reconstruction-from-RGB-Images to try our codes and pre-trained models.
Hyperspectral imaging is one of the most promising techniques for intraoperative tissue characterisation. Snapshot mosaic cameras, which can capture hyperspectral data in a single exposure, have the potential to make a real-time hyperspectral imaging system for surgical decision-making possible. However, optimal exploitation of the captured data requires solving an ill-posed demosaicking problem and applying additional spectral corrections to recover spatial and spectral information of the image. In this work, we propose a deep learning-based image demosaicking algorithm for snapshot hyperspectral images using supervised learning methods. Due to the lack of publicly available medical images acquired with snapshot mosaic cameras, a synthetic image generation approach is proposed to simulate snapshot images from existing medical image datasets captured by high-resolution, but slow, hyperspectral imaging devices. Image reconstruction is achieved using convolutional neural networks for hyperspectral image super-resolution, followed by cross-talk and leakage correction using a sensor-specific calibration matrix. The resulting demosaicked images are evaluated both quantitatively and qualitatively, showing clear improvements in image quality compared to a baseline demosaicking method using linear interpolation. Moreover, the fast processing time of~45,ms of our algorithm to obtain super-resolved RGB or oxygenation saturation maps per image frame for a state-of-the-art snapshot mosaic camera demonstrates the potential for its seamless integration into real-time surgical hyperspectral imaging applications.
Hyperspectral signal reconstruction aims at recovering the original spectral input that produced a certain trichromatic (RGB) response from a capturing device or observer. Given the heavily underconstrained, non-linear nature of the problem, traditional techniques leverage different statistical properties of the spectral signal in order to build informative priors from real world object reflectances for constructing such RGB to spectral signal mapping. However, most of them treat each sample independently, and thus do not benefit from the contextual information that the spatial dimensions can provide. We pose hyperspectral natural image reconstruction as an image to image mapping learning problem, and apply a conditional generative adversarial framework to help capture spatial semantics. This is the first time Convolutional Neural Networks -and, particularly, Generative Adversarial Networks- are used to solve this task. Quantitative evaluation shows a Root Mean Squared Error (RMSE) drop of 33.2% and a Relative RMSE drop of 54.0% on the ICVL natural hyperspectral image dataset.
This paper presents a quarter Laplacian filter that can preserve corners and edges during image smoothing. Its support region is $2times2$, which is smaller than the $3times3$ support region of Laplacian filter. Thus, it is more local. Moreover, this filter can be implemented via the classical box filter, leading to high performance for real time applications. Finally, we show its edge preserving property in several image processing tasks, including image smoothing, texture enhancement, and low-light image enhancement. The proposed filter can be adopted in a wide range of image processing applications.
Hyperspectral imaging enables versatile applications due to its competence in capturing abundant spatial and spectral information, which are crucial for identifying substances. However, the devices for acquiring hyperspectral images are expensive and complicated. Therefore, many alternative spectral imaging methods have been proposed by directly reconstructing the hyperspectral information from lower-cost, more available RGB images. We present a thorough investigation of these state-of-the-art spectral reconstruction methods from the widespread RGB images. A systematic study and comparison of more than 25 methods has revealed that most of the data-driven deep learning methods are superior to prior-based methods in terms of reconstruction accuracy and quality despite lower speeds. This comprehensive review can serve as a fruitful reference source for peer researchers, thus further inspiring future development directions in related domains.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا