Do you want to publish a course? Click here

paper2repo: GitHub Repository Recommendation for Academic Papers

117   0   0.0 ( 0 )
 Added by Huajie Shao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

GitHub has become a popular social application platform, where a large number of users post their open source projects. In particular, an increasing number of researchers release repositories of source code related to their research papers in order to attract more people to follow their work. Motivated by this trend, we describe a novel item-item cross-platform recommender system, $textit{paper2repo}$, that recommends relevant repositories on GitHub that match a given paper in an academic search system such as Microsoft Academic. The key challenge is to identify the similarity between an input paper and its related repositories across the two platforms, $textit{without the benefit of human labeling}$. Towards that end, paper2repo integrates text encoding and constrained graph convolutional networks (GCN) to automatically learn and map the embeddings of papers and repositories into the same space, where proximity offers the basis for recommendation. To make our method more practical in real life systems, labels used for model training are computed automatically from features of user actions on GitHub. In machine learning, such automatic labeling is often called {em distant supervision/}. To the authors knowledge, this is the first distant-supervised cross-platform (paper to repository) matching system. We evaluate the performance of paper2repo on real-world data sets collected from GitHub and Microsoft Academic. Results demonstrate that it outperforms other state of the art recommendation methods.



rate research

Read More

First identified in Wuhan, China, in December 2019, the outbreak of COVID-19 has been declared as a global emergency in January, and a pandemic in March 2020 by the World Health Organization (WHO). Along with this pandemic, we are also experiencing an infodemic of information with low credibility such as fake news and conspiracies. In this work, we present ReCOVery, a repository designed and constructed to facilitate research on combating such information regarding COVID-19. We first broadly search and investigate ~2,000 news publishers, from which 60 are identified with extreme [high or low] levels of credibility. By inheriting the credibility of the media on which they were published, a total of 2,029 news articles on coronavirus, published from January to May 2020, are collected in the repository, along with 140,820 tweets that reveal how these news articles have spread on the Twitter social network. The repository provides multimodal information of news articles on coronavirus, including textual, visual, temporal, and network information. The way that news credibility is obtained allows a trade-off between dataset scalability and label accuracy. Extensive experiments are conducted to present data statistics and distributions, as well as to provide baseline performances for predicting news credibility so that future methods can be compared. Our repository is available at http://coronavirus-fakenews.com.
65 - Ghazaleh Beigi , Huan Liu 2018
The pervasive use of social media provides massive data about individuals online social activities and their social relations. The building block of most existing recommendation systems is the similarity between users with social relations, i.e., friends. While friendship ensures some homophily, the similarity of a user with her friends can vary as the number of friends increases. Research from sociology suggests that friends are more similar than strangers, but friends can have different interests. Exogenous information such as comments and ratings may help discern different degrees of agreement (i.e., congruity) among similar users. In this paper, we investigate if users congruity can be incorporated into recommendation systems to improve its performance. Experimental results demonstrate the effectiveness of embedding congruity related information into recommendation systems.
85 - Le Wu , Junwei Li , Peijie Sun 2020
Social recommendation has emerged to leverage social connections among users for predicting users unknown preferences, which could alleviate the data sparsity issue in collaborative filtering based recommendation. Early approaches relied on utilizing each users first-order social neighbors interests for better user modeling and failed to model the social influence diffusion process from the global social network structure. Recently, we propose a preliminary work of a neural influence diffusion network (i.e., DiffNet) for social recommendation (Diffnet), which models the recursive social diffusion process to capture the higher-order relationships for each user. However, we argue that, as users play a central role in both user-user social network and user-item interest network, only modeling the influence diffusion process in the social network would neglect the users latent collaborative interests in the user-item interest network. In this paper, we propose DiffNet++, an improved algorithm of DiffNet that models the neural influence diffusion and interest diffusion in a unified framework. By reformulating the social recommendation as a heterogeneous graph with social network and interest network as input, DiffNet++ advances DiffNet by injecting these two network information for user embedding learning at the same time. This is achieved by iteratively aggregating each users embedding from three aspects: the users previous embedding, the influence aggregation of social neighbors from the social network, and the interest aggregation of item neighbors from the user-item interest network. Furthermore, we design a multi-level attention network that learns how to attentively aggregate user embeddings from these three aspects. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model.
In order to accomplish complex tasks, it is often necessary to compose a team consisting of experts with diverse competencies. However, for proper functioning, it is also preferable that a team be socially cohesive. A team recommendation system, which facilitates the search for potential team members can be of great help both for (i) individuals who need to seek out collaborators and (ii) managers who need to build a team for some specific tasks. A decision support system which readily helps summarize such metrics, and possibly rank the teams in a personalized manner according to the end users preferences, can be a great tool to navigate what would otherwise be an information avalanche. In this work we present a general framework of how to compose such subsystems together to build a composite team recommendation system, and instantiate it for a case study of academic teams.
As a result of the importance of academic collaboration at smart conferences, various researchers have utilized recommender systems to generate effective recommendations for participants. Recent research has shown that the personality traits of users can be used as innovative entities for effective recommendations. Nevertheless, subjective perceptions involving the personality of participants at smart conferences are quite rare and havent gained much attention. Inspired by the personality and social characteristics of users, we present an algorithm called Socially and Personality Aware Recommendation of Participants (SPARP). Our recommendation methodology hybridizes the computations of similar interpersonal relationships and personality traits among participants. SPARP models the personality and social characteristic profiles of participants at a smart conference. By combining the above recommendation entities, SPARP then recommends participants to each other for effective collaborations. We evaluate SPARP using a relevant dataset. Experimental results confirm that SPARP is reliable and outperforms other state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا