No Arabic abstract
The pervasive use of social media provides massive data about individuals online social activities and their social relations. The building block of most existing recommendation systems is the similarity between users with social relations, i.e., friends. While friendship ensures some homophily, the similarity of a user with her friends can vary as the number of friends increases. Research from sociology suggests that friends are more similar than strangers, but friends can have different interests. Exogenous information such as comments and ratings may help discern different degrees of agreement (i.e., congruity) among similar users. In this paper, we investigate if users congruity can be incorporated into recommendation systems to improve its performance. Experimental results demonstrate the effectiveness of embedding congruity related information into recommendation systems.
GitHub has become a popular social application platform, where a large number of users post their open source projects. In particular, an increasing number of researchers release repositories of source code related to their research papers in order to attract more people to follow their work. Motivated by this trend, we describe a novel item-item cross-platform recommender system, $textit{paper2repo}$, that recommends relevant repositories on GitHub that match a given paper in an academic search system such as Microsoft Academic. The key challenge is to identify the similarity between an input paper and its related repositories across the two platforms, $textit{without the benefit of human labeling}$. Towards that end, paper2repo integrates text encoding and constrained graph convolutional networks (GCN) to automatically learn and map the embeddings of papers and repositories into the same space, where proximity offers the basis for recommendation. To make our method more practical in real life systems, labels used for model training are computed automatically from features of user actions on GitHub. In machine learning, such automatic labeling is often called {em distant supervision/}. To the authors knowledge, this is the first distant-supervised cross-platform (paper to repository) matching system. We evaluate the performance of paper2repo on real-world data sets collected from GitHub and Microsoft Academic. Results demonstrate that it outperforms other state of the art recommendation methods.
In this paper, we study the problem of recommendation system where the users and items to be recommended are rich data structures with multiple entity types and with multiple sources of side-information in the form of graphs. We provide a general formulation for the problem that captures the complexities of modern real-world recommendations and generalizes many existing formulations. In our formulation, each user/document that requires a recommendation and each item or tag that is to be recommended, both are modeled by a set of static entities and a dynamic component. The relationships between entities are captured by several weighted bipartite graphs. To effectively exploit these complex interactions and learn the recommendation model, we propose MEDRES- a multiple graph-CNN based novel deep-learning architecture. MEDRES uses AL-GCN, a novel graph convolution network block, that harnesses strong representative features from the underlying graphs. Moreover, in order to capture highly heterogeneous engagement of different users with the system and constraints on the number of items to be recommended, we propose a novel ranking metric pAp@k along with a method to optimize the metric directly. We demonstrate effectiveness of our method on two benchmarks: a) citation data, b) Flickr data. In addition, we present two real-world case studies of our formulation and the MEDRES architecture. We show how our technique can be used to naturally model the message recommendation problem and the teams recommendation problem in the Microsoft Teams (MSTeams) product and demonstrate that it is 5-6% points more accurate than the production-grade models.
Modern recommendation systems rely on the wisdom of the crowd to learn the optimal course of action. This induces an inherent mis-alignment of incentives between the systems objective to learn (explore) and the individual users objective to take the contemporaneous optimal action (exploit). The design of such systems must account for this and also for additional information available to the users. A prominent, yet simple, example is when agents arrive sequentially and each agent observes the action and reward of his predecessor. We provide an incentive compatible and asymptotically optimal mechanism for that setting. The complexity of the mechanism suggests that the design of such systems for general settings is a challenging task.
Social recommendation has emerged to leverage social connections among users for predicting users unknown preferences, which could alleviate the data sparsity issue in collaborative filtering based recommendation. Early approaches relied on utilizing each users first-order social neighbors interests for better user modeling and failed to model the social influence diffusion process from the global social network structure. Recently, we propose a preliminary work of a neural influence diffusion network (i.e., DiffNet) for social recommendation (Diffnet), which models the recursive social diffusion process to capture the higher-order relationships for each user. However, we argue that, as users play a central role in both user-user social network and user-item interest network, only modeling the influence diffusion process in the social network would neglect the users latent collaborative interests in the user-item interest network. In this paper, we propose DiffNet++, an improved algorithm of DiffNet that models the neural influence diffusion and interest diffusion in a unified framework. By reformulating the social recommendation as a heterogeneous graph with social network and interest network as input, DiffNet++ advances DiffNet by injecting these two network information for user embedding learning at the same time. This is achieved by iteratively aggregating each users embedding from three aspects: the users previous embedding, the influence aggregation of social neighbors from the social network, and the interest aggregation of item neighbors from the user-item interest network. Furthermore, we design a multi-level attention network that learns how to attentively aggregate user embeddings from these three aspects. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model.
In order to accomplish complex tasks, it is often necessary to compose a team consisting of experts with diverse competencies. However, for proper functioning, it is also preferable that a team be socially cohesive. A team recommendation system, which facilitates the search for potential team members can be of great help both for (i) individuals who need to seek out collaborators and (ii) managers who need to build a team for some specific tasks. A decision support system which readily helps summarize such metrics, and possibly rank the teams in a personalized manner according to the end users preferences, can be a great tool to navigate what would otherwise be an information avalanche. In this work we present a general framework of how to compose such subsystems together to build a composite team recommendation system, and instantiate it for a case study of academic teams.