No Arabic abstract
Social recommendation has emerged to leverage social connections among users for predicting users unknown preferences, which could alleviate the data sparsity issue in collaborative filtering based recommendation. Early approaches relied on utilizing each users first-order social neighbors interests for better user modeling and failed to model the social influence diffusion process from the global social network structure. Recently, we propose a preliminary work of a neural influence diffusion network (i.e., DiffNet) for social recommendation (Diffnet), which models the recursive social diffusion process to capture the higher-order relationships for each user. However, we argue that, as users play a central role in both user-user social network and user-item interest network, only modeling the influence diffusion process in the social network would neglect the users latent collaborative interests in the user-item interest network. In this paper, we propose DiffNet++, an improved algorithm of DiffNet that models the neural influence diffusion and interest diffusion in a unified framework. By reformulating the social recommendation as a heterogeneous graph with social network and interest network as input, DiffNet++ advances DiffNet by injecting these two network information for user embedding learning at the same time. This is achieved by iteratively aggregating each users embedding from three aspects: the users previous embedding, the influence aggregation of social neighbors from the social network, and the interest aggregation of item neighbors from the user-item interest network. Furthermore, we design a multi-level attention network that learns how to attentively aggregate user embeddings from these three aspects. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model.
Precise user and item embedding learning is the key to building a successful recommender system. Traditionally, Collaborative Filtering(CF) provides a way to learn user and item embeddings from the user-item interaction history. However, the performance is limited due to the sparseness of user behavior data. With the emergence of online social networks, social recommender systems have been proposed to utilize each users local neighbors preferences to alleviate the data sparsity for better user embedding modeling. We argue that, for each user of a social platform, her potential embedding is influenced by her trusted users. As social influence recursively propagates and diffuses in the social network, each users interests change in the recursive process. Nevertheless, the current social recommendation models simply developed static models by leveraging the local neighbors of each user without simulating the recursive diffusion in the global social network, leading to suboptimal recommendation performance. In this paper, we propose a deep influence propagation model to stimulate how users are influenced by the recursive social diffusion process for social recommendation. For each user, the diffusion process starts with an initial embedding that fuses the related features and a free user latent vector that captures the latent behavior preference. The key idea of our proposed model is that we design a layer-wise influence propagation structure to model how users latent embeddings evolve as the social diffusion process continues. We further show that our proposed model is general and could be applied when the user~(item) attributes or the social network structure is not available. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model, with more than 13% performance improvements over the best baselines.
With ever-increasing amounts of online information available, modeling and predicting individual preferences-for books or articles, for example-is becoming more and more important. Good predictions enable us to improve advice to users, and obtain a better understanding of the socio-psychological processes that determine those preferences. We have developed a collaborative filtering model, with an associated scalable algorithm, that makes accurate predictions of individuals preferences. Our approach is based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. Importantly, we allow each individual and each item to belong simultaneously to mixtures of different groups and, unlike many popular approaches, such as matrix factorization, we do not assume implicitly or explicitly that individuals in each group prefer items in a single group of items. The resulting overlapping groups and the predicted preferences can be inferred with a expectation-maximization algorithm whose running time scales linearly (per iteration). Our approach enables us to predict individual preferences in large datasets, and is considerably more accurate than the current algorithms for such large datasets.
Existing socio-psychological studies suggest that users of a social network form their opinions relying on the opinions of their neighbors. According to DeGroot opinion formation model, one value of particular importance is the asymptotic consensus value---the sum of user opinions weighted by the users eigenvector centralities. This value plays the role of an attractor for the opinions in the network and is a lucrative target for external influence. However, since any potentially malicious control of the opinion distribution in a social network is clearly undesirable, it is important to design methods to prevent the external attempts to strategically change the asymptotic consensus value. In this work, we assume that the adversary wants to maximize the asymptotic consensus value by altering the opinions of some users in a network; we, then, state DIVER---an NP-hard problem of disabling such external influence attempts by strategically adding a limited number of edges to the network. Relying on the theory of Markov chains, we provide perturbation analysis that shows how eigenvector centrality and, hence, DIVERs objective function change in response to an edges addition to the network. The latter leads to the design of a pseudo-linear-time heuristic for DIVER, whose computation relies on efficient estimation of mean first passage times in a Markov chain. We confirm our theoretical findings in experiments.
Heterogeneous information network (HIN) is widely applied to recommendation systems due to its capability of modeling various auxiliary information with meta-path. However, existing HIN-based recommendation models usually fuse the information from various meta-paths by simple weighted sum or concatenation, which limits the improvement of performance because it lacks the capability of interest compositions among meta-paths. In this article, we propose a HIN-based Interest Composition model for Recommendation (HicRec). Specially, the representations of users and items are learnt with graph neural network on both graph structure and features in each meta-path, and a parameter sharing mechanism is utilized here to ensure the representations of users and items are in the same latent space. Then, users interest on each item from each pair of related meta-paths is calculated by a combination of the representations of users and items. The composed interests of users are obtained by a composition of them from both intra- and inter-meta-paths for recommendation. Extensive experiments are conducted on three real-world datasets and the results demonstrate the outperformance of our proposed HicRec against the baselines.
The graph-based model can help to detect suspicious fraud online. Owing to the development of Graph Neural Networks~(GNNs), prior research work has proposed many GNN-based fraud detection frameworks based on either homogeneous graphs or heterogeneous graphs. These work follow the existing GNN framework by aggregating the neighboring information to learn the node embedding, which lays on the assumption that the neighbors share similar context, features, and relations. However, the inconsistency problem is hardly investigated, i.e., the context inconsistency, feature inconsistency, and relation inconsistency. In this paper, we introduce these inconsistencies and design a new GNN framework, $mathsf{GraphConsis}$, to tackle the inconsistency problem: (1) for the context inconsistency, we propose to combine the context embeddings with node features, (2) for the feature inconsistency, we design a consistency score to filter the inconsistent neighbors and generate corresponding sampling probability, and (3) for the relation inconsistency, we learn a relation attention weights associated with the sampled nodes. Empirical analysis on four datasets indicates the inconsistency problem is crucial in a fraud detection task. The extensive experiments prove the effectiveness of $mathsf{GraphConsis}$. We also released a GNN-based fraud detection toolbox with implementations of SOTA models. The code is available at https://github.com/safe-graph/DGFraud.