Do you want to publish a course? Click here

Mobile phone data and COVID-19: Missing an opportunity?

270   0   0.0 ( 0 )
 Added by Patrick Vinck
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper describes how mobile phone data can guide government and public health authorities in determining the best course of action to control the COVID-19 pandemic and in assessing the effectiveness of control measures such as physical distancing. It identifies key gaps and reasons why this kind of data is only scarcely used, although their value in similar epidemics has proven in a number of use cases. It presents ways to overcome these gaps and key recommendations for urgent action, most notably the establishment of mixed expert groups on national and regional level, and the inclusion and support of governments and public authorities early on. It is authored by a group of experienced data scientists, epidemiologists, demographers and representatives of mobile network operators who jointly put their work at the service of the global effort to combat the COVID-19 pandemic.



rate research

Read More

Statistics on migration flows are often derived from census data, which suffer from intrinsic limitations, including costs and infrequent sampling. When censuses are used, there is typically a time gap - up to a few years - between the data collection process and the computation and publication of relevant statistics. This gap is a significant drawback for the analysis of a phenomenon that is continuously and rapidly changing. Alternative data sources, such as surveys and field observations, also suffer from reliability, costs, and scale limitations. The ubiquity of mobile phones enables an accurate and efficient collection of up-to-date data related to migration. Indeed, passively collected data by the mobile network infrastructure via aggregated, pseudonymized Call Detail Records (CDRs) is of great value to understand human migrations. Through the analysis of mobile phone data, we can shed light on the mobility patterns of migrants, detect spontaneous settlements and understand the daily habits, levels of integration, and human connections of such vulnerable social groups. This Chapter discusses the importance of leveraging mobile phone data as an alternative data source to gather precious and previously unavailable insights on various aspects of migration. Also, we highlight pending challenges that would need to be addressed before we can effectively benefit from the availability of mobile phone data to help make better decisions that would ultimately improve millions of peoples lives.
Evaluating relative changes leads to additional insights which would remain hidden when only evaluating absolute changes. We analyze a dataset describing mobility of mobile phones in Austria before, during COVID-19 lock-down measures until recent. By applying compositional data analysis we show that formerly hidden information becomes available: we see that the elderly population groups increase relative mobility and that the younger groups especially on weekends also do not decrease their mobility as much as the others.
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) or computing intelligence models. These efforts have proved useful in some instances by allowing decision makers to distinguish different scenarios during the emergency, but their accuracy has been disappointing, forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a simple Multiple Linear Regression model, optimised to use call data to forecast the number of daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to better deal with risk. Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers at local level who acutely need to organise resources in already strained health services. We hope that this model would serve as a building block of other forecasting efforts that on the one hand would help front-line personal and decision makers at local level, and on the other would facilitate the communication with other modelling efforts being made at the national level to improve the way we tackle this pandemic and other similar future challenges.
In this early draft, we describe a decentralized, app-based approach to COVID-19 vaccine distribution that facilitates zero knowledge verification, dynamic vaccine scheduling, continuous symptoms reporting, access to aggregate analytics based on population trends and more. To ensure equity, our solution is developed to work with limited internet access as well. In addition, we describe the six critical functions that we believe last mile vaccination management platforms must perform, examine existing vaccine management systems, and present a model for privacy-focused, individual-centric solutions.
In this study, we investigate the scientific research response from the early stages of the pandemic, and we review key findings on how the early warning systems developed in previous epidemics responded to contain the virus. The data records are analysed with commutable statistical methods, including R Studio, Bibliometrix package, and the Web of Science data mining tool. We identified few different clusters, containing references to exercise, inflammation, smoking, obesity and many additional factors. From the analysis on Covid-19 and vaccine, we discovered that although the USA is leading in volume of scientific research on Covid 19 vaccine, the leading 3 research institutions (Fudan, Melbourne, Oxford) are not based in the USA. Hence, it is difficult to predict which country would be first to produce a Covid 19 vaccine.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا