No Arabic abstract
In this early draft, we describe a decentralized, app-based approach to COVID-19 vaccine distribution that facilitates zero knowledge verification, dynamic vaccine scheduling, continuous symptoms reporting, access to aggregate analytics based on population trends and more. To ensure equity, our solution is developed to work with limited internet access as well. In addition, we describe the six critical functions that we believe last mile vaccination management platforms must perform, examine existing vaccine management systems, and present a model for privacy-focused, individual-centric solutions.
How to contain the spread of the COVID-19 virus is a major concern for most countries. As the situation continues to change, various countries are making efforts to reopen their economies by lifting some restrictions and enforcing new measures to prevent the spread. In this work, we review some approaches that have been adopted to contain the COVID-19 virus such as contact tracing, clusters identification, movement restrictions, and status validation. Specifically, we classify available techniques based on some characteristics such as technology, architecture, trade-offs (privacy vs utility), and the phase of adoption. We present a novel approach for evaluating privacy using both qualitative and quantitative measures of privacy-utility assessment of contact tracing applications. In this new method, we classify utility at three (3) distinct levels: no privacy, 100% privacy, and at k where k is set by the system providing the utility or privacy.
Contact tracing is an essential tool for public health officials and local communities to fight the spread of novel diseases, such as for the COVID-19 pandemic. The Singaporean government just released a mobile phone app, TraceTogether, that is designed to assist health officials in tracking down exposures after an infected individual is identified. However, there are important privacy implications of the existence of such tracking apps. Here, we analyze some of those implications and discuss ways of ameliorating the privacy concerns without decreasing usefulness to public health. We hope in writing this document to ensure that privacy is a central feature of conversations surrounding mobile contact tracing apps and to encourage community efforts to develop alternative effective solutions with stronger privacy protection for the users. Importantly, though we discuss potential modifications, this document is not meant as a formal research paper, but instead is a response to some of the privacy characteristics of direct contact tracing apps like TraceTogether and an early-stage Request for Comments to the community. Date written: 2020-03-24 Minor correction: 2020-03-30
This paper describes how mobile phone data can guide government and public health authorities in determining the best course of action to control the COVID-19 pandemic and in assessing the effectiveness of control measures such as physical distancing. It identifies key gaps and reasons why this kind of data is only scarcely used, although their value in similar epidemics has proven in a number of use cases. It presents ways to overcome these gaps and key recommendations for urgent action, most notably the establishment of mixed expert groups on national and regional level, and the inclusion and support of governments and public authorities early on. It is authored by a group of experienced data scientists, epidemiologists, demographers and representatives of mobile network operators who jointly put their work at the service of the global effort to combat the COVID-19 pandemic.
In this paper, we introduce a game that allows one to assess the potential loss of efficiency induced by a decentralized control or local management of a global epidemic. Each player typically represents a region or a country which is assumed to choose its control action to implement a tradeoff between socioeconomic aspects and the health aspect. We conduct the Nash equilibrium analysis of this game. Since the analysis is not trivial in general, sufficient conditions for existence and uniqueness are provided. Then we quantify through numerical results the loss induced by decentralization, measured in terms of price of anarchy (PoA) and price of connectedness (PoC). These results allow one to clearly identify scenarios where decentralization is acceptable or not regarding to the retained global efficiency measures.
Digital contact tracing is a public health intervention. It should be integrated with local health policy, provide rapid and accurate notifications to exposed individuals, and encourage high app uptake and adherence to quarantine. Real-time monitoring and evaluation of effectiveness of app-based contact tracing is key for improvement and public trust.