Do you want to publish a course? Click here

Magnetic Properties and Electronic Structure of Magnetic Topological Insulator MnBi$_2$Se$_4$

90   0   0.0 ( 0 )
 Added by Roland Kawakami
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The intrinsic magnetic topological insulators MnBi$_2$X$_4$ (X = Se, Te) are promising candidates in realizing various novel topological states related to symmetry breaking by magnetic order. Although much progress had been made in MnBi$_2$Te$_4$, the study of MnBi$_2$Se$_4$ has been lacking due to the difficulty of material synthesis of the desired trigonal phase. Here, we report the synthesis of multilayer trigonal MnBi$_2$Se$_4$ with alternating-layer molecular beam epitaxy. Atomic-resolution scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) identify a well-ordered multilayer van der Waals (vdW) crystal with septuple-layer base units in agreement with the trigonal structure. Systematic thickness-dependent magnetometry studies illustrate the layered antiferromagnetic ordering as predicted by theory. Angle-resolved photoemission spectroscopy (ARPES) reveals the gapless Dirac-like surface state of MnBi$_2$Se$_4$, which demonstrates that MnBi$_2$Se$_4$ is a topological insulator above the magnetic ordering temperature. These systematic studies show that MnBi$_2$Se$_4$ is a promising candidate for exploring the rich topological phases of layered antiferromagnetic topological insulators.



rate research

Read More

Despite the rapid progress in understanding the first intrinsic magnetic topological insulator MnBi$_2$Te$_4$, its electronic structure remains a topic under debates. Here we perform a thorough spectroscopic investigation into the electronic structure of MnBi$_2$Te$_4$ via laser-based angle-resolved photoemission spectroscopy. Through quantitative analysis, we estimate an upper bound of 3 meV for the gap size of the topological surface state. Furthermore, our circular dichroism measurements reveal band chiralities for both the topological surface state and quasi-2D bands, which can be well reproduced in a band hybridization model. A numerical simulation of energy-momentum dispersions based on a four-band model with an additional step potential near the surface provides a promising explanation for the origin of the quasi-2D bands. Our study represents a solid step forward in reconciling the existing controversies in the electronic structure of MnBi$_2$Te$_4$, and provides an important framework to understand the electronic structures of other relevant topological materials MnBi$_{2n}$Te$_{3n+1}$.
137 - M. Kopf , J. Ebad-Allah , S. Lee 2020
The layered topological insulator MnBi$_2$Te$_4$ has attracted great interest recently due to its intrinsic antiferromagnetic order, potentially hosting various topological phases. By temperature-dependent infrared spectroscopy over a broad frequency range, we studied the changes in the optical conductivity of MnBi$_2$Te$_4$ at the magnetic ordering temperature. The temperature dependence of several optical parameters reveals an anomaly at the magnetic phase transition, which suggests the correlation between the bulk electronic band structure and the magnetism. We relate our findings to recent reports on the temperature dependence of the electronic band structure of MnBi$_2$Te$_4$.
Using scanning tunneling microscopy and spectroscopy, we visualized the native defects in antiferromagnetic topological insulator $mathrm{MnBi_2Te_4}$. Two native defects $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Te}}$ antisites can be well resolved in the topographic images. $mathrm{Mn_{Bi}}$ tend to suppress the density of states at conduction band edge. Spectroscopy imaging reveals a localized peak-like local density of state at $sim80$~meV below the Fermi energy. A careful inspection of topographic and spectroscopic images, combined with density functional theory calculation, suggests this results from $mathrm{Bi_{Mn}}$ antisites at Mn sites. The random distribution of $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Mn}}$ antisites results in spatial fluctuation of local density of states near the Fermi level in $mathrm{MnBi_2Te_4}$.
Modification of the gap at the Dirac point (DP) in antiferromagnetic (AFM) axion topological insulator MnBi$_2$Te$_4$ and its electronic and spin structure has been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation with variation of temperature (9-35~K), light polarization and photon energy. We have distinguished both a large (62-67~meV) and a reduced (15-18~meV) gap at the DP in the ARPES dispersions, which remains open above the Neel temperature ($T_mathrm{N}=24.5$~K). We propose that the gap above $T_mathrm{N}$ remains open due to short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for large-gap sample and significantly reduced effective magnetic moment for the reduced-gap sample. These effects can be associated with a shift of the topological DC state towards the second Mn layer due to structural defects and mechanical disturbance, where it is influenced by a compensated effect of opposite magnetic moments.
We report measurements on the high temperature ionic and low temperature electronic properties of the 3D topological insulator Bi$_2$Te$_2$Se using ion-implanted $^8$Li $beta$-detected nuclear magnetic relaxation and resonance. With implantation energies in the range 5-28 keV, the probes penetrate beyond the expected range of the topological surface state, but are still within 250 nm of the surface. At temperatures above ~150 K, spin-lattice relaxation measurements reveal isolated $^8$Li$^{+}$ diffusion with an activation energy $E_{A} = 0.185(8)$ eV and attempt frequency $tau_{0}^{-1} = 8(3) times 10^{11}$ s$^{-1}$ for atomic site-to-site hopping. At lower temperature, we find a linear Korringa-like relaxation mechanism with a field dependent slope and intercept, which is accompanied by an anomalous field dependence to the resonance shift. We suggest that these may be related to a strong contribution from orbital currents or the magnetic freezeout of charge carriers in this heavily compensated semiconductor, but that conventional theories are unable to account for the extent of the field dependence. Conventional NMR of the stable host nuclei may help elucidate their origin.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا