Do you want to publish a course? Click here

Construction of a two-phase flow with singular energy by gradient flow methods

81   0   0.0 ( 0 )
 Added by Daniel Matthes
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove the existence of weak solutions to a system of two diffusion equations that are coupled by a pointwise volume constraint. The time evolution is given by gradient dynamics for a free energy functional. Our primary example is a model for the demixing of polymers, the corresponding energy is the one of Flory, Huggins and deGennes. Due to the non-locality in the equations, the dynamics considered here is qualitatively different from the one found in the formally related Cahn-Hilliard equations. Our angle of attack is from the theory of optimal mass transport, that is, we consider the evolution equations for the two components as two gradient flows in the Wasserstein distance with one joint energy functional that has the volume constraint built in. The main difference to our previous work arXiv:1712.06446 is the nonlinearity of the energy density in the gradient part, which becomes singular at the interface between pure and mixed phases.



rate research

Read More

In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one. In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals.
We study a non-local version of the Cahn-Hilliard dynamics for phase separation in a two-component incompressible and immiscible mixture with linear mobilities. In difference to the celebrated local model with nonlinear mobility, it is only assumed that the divergences of the two fluxes --- but not necessarily the fluxes themselves --- annihilate each other. Our main result is a rigorous proof of existence of weak solutions. The starting point is the formal representation of the dynamics as a constrained gradient flow in the Wasserstein metric. We then show that time-discrete approximations by means of the incremental minimizing movement scheme converge to a weak solution in the limit. Further, we compare the non-local model to the classical Cahn-Hilliard model in numerical experiments. Our results illustrate the significant speed-up in the decay of the free energy due to the higher degree of freedom for the velocity fields.
We study the asymptotic behaviour of a gradient system in a regime in which the driving energy becomes singular. For this system gradient-system convergence concepts are ineffective. We characterize the limiting behaviour in a different way, by proving $Gamma$-convergence of the so-called energy-dissipation functional, which combines the gradient-system components of energy and dissipation in a single functional. The $Gamma$-limit of these functionals again characterizes a variational evolution, but this limit functional is not the energy-dissipation functional of any gradient system. The system in question describes the diffusion of a particle in a one-dimensional double-well energy landscape, in the limit of small noise. The wells have different depth, and in the small-noise limit the process converges to a Markov process on a two-state system, in which jumps only happen from the higher to the lower well. This transmutation of a gradient system into a variational evolution of non-gradient type is a model for how many one-directional chemical reactions emerge as limit of reversible ones. The $Gamma$-convergence proved in this paper both identifies the `fate of the gradient system for these reactions and the variational structure of the limiting irreversible reactions.
The gradient-flow dynamics of an arbitrary geometric quantity is derived using a generalization of Darcys Law. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanics. Eulerian equations for self-organization of scalars, 1-forms and 2-forms are shown to reduce to nonlocal characteristic equations. We identify singular solutions of these equations corresponding to collapsed (clumped) states and discuss their evolution.
Motivated by models of fracture mechanics, this paper is devoted to the analysis of unilateral gradient flows of the Ambrosio-Tortorelli functional, where unilaterality comes from an irreversibility constraint on the fracture density. In the spirit of gradient flows in metric spaces, such evolutions are defined in terms of curves of maximal unilateral slope, and are constructed by means of implicit Euler schemes. An asymptotic analysis in the Mumford-Shah regime is also carried out. It shows the convergence towards a generalized heat equation outside a time increasing crack set.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا