No Arabic abstract
In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one. In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals.
We study the asymptotic behaviour of a gradient system in a regime in which the driving energy becomes singular. For this system gradient-system convergence concepts are ineffective. We characterize the limiting behaviour in a different way, by proving $Gamma$-convergence of the so-called energy-dissipation functional, which combines the gradient-system components of energy and dissipation in a single functional. The $Gamma$-limit of these functionals again characterizes a variational evolution, but this limit functional is not the energy-dissipation functional of any gradient system. The system in question describes the diffusion of a particle in a one-dimensional double-well energy landscape, in the limit of small noise. The wells have different depth, and in the small-noise limit the process converges to a Markov process on a two-state system, in which jumps only happen from the higher to the lower well. This transmutation of a gradient system into a variational evolution of non-gradient type is a model for how many one-directional chemical reactions emerge as limit of reversible ones. The $Gamma$-convergence proved in this paper both identifies the `fate of the gradient system for these reactions and the variational structure of the limiting irreversible reactions.
We prove the existence of weak solutions to a system of two diffusion equations that are coupled by a pointwise volume constraint. The time evolution is given by gradient dynamics for a free energy functional. Our primary example is a model for the demixing of polymers, the corresponding energy is the one of Flory, Huggins and deGennes. Due to the non-locality in the equations, the dynamics considered here is qualitatively different from the one found in the formally related Cahn-Hilliard equations. Our angle of attack is from the theory of optimal mass transport, that is, we consider the evolution equations for the two components as two gradient flows in the Wasserstein distance with one joint energy functional that has the volume constraint built in. The main difference to our previous work arXiv:1712.06446 is the nonlinearity of the energy density in the gradient part, which becomes singular at the interface between pure and mixed phases.
We apply the generalized conditional gradient algorithm to potential mean field games and we show its well-posedeness. It turns out that this method can be interpreted as a learning method called fictitious play. More precisely, each step of the generalized conditional gradient method amounts to compute the best-response of the representative agent, for a predicted value of the coupling terms of the game. We show that for the learning sequence $delta_k = 2/(k+2)$, the potential cost converges in $O(1/k)$, the exploitability and the variables of the problem (distribution, congestion, price, value function and control terms) converge in $O(1/sqrt{k})$, for specific norms.
A nonlinear parabolic equation of sixth order is analyzed. The equation arises as a reduction of a model from quantum statistical mechanics, and also as the gradient flow of a second-order information functional with respect to the $L^2$-Wasserstein metric. First, we prove global existence of weak solutions for initial conditions of finite entropy by means of the time-discrete minimizing movement scheme. Second, we calculate the linearization of the dynamics around the unique stationary solution, for which we can explicitly compute the entire spectrum. A key element in our approach is a particular relation between the entropy, the Fisher information and the second order functional that generates the gradient flow under consideration.
Classical gradient systems have a linear relation between rates and driving forces. In generalized gradient systems we allow for arbitrary relations derived from general non-quadratic dissipation potentials. This paper describes two natural origins for these structures. A first microscopic origin of generalized gradient structures is given by the theory of large-deviation principles. While Markovian diffusion processes lead to classical gradient structures, Poissonian jump processes give rise to cosh-type dissipation potentials. A second origin arises via a new form of convergence, that we call EDP-convergence. Even when starting with classical gradient systems, where the dissipation potential is a quadratic functional of the rate, we may obtain a generalized gradient system in the evolutionary $Gamma$-limit. As examples we treat (i) the limit of a diffusion equation having a thin layer of low diffusivity, which leads to a membrane model, and (ii) the limit of diffusion over a high barrier, which gives a reaction-diffusion system.