Do you want to publish a course? Click here

Unilateral gradient flow of the Ambrosio-Tortorelli functional by minimizing movements

209   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by models of fracture mechanics, this paper is devoted to the analysis of unilateral gradient flows of the Ambrosio-Tortorelli functional, where unilaterality comes from an irreversibility constraint on the fracture density. In the spirit of gradient flows in metric spaces, such evolutions are defined in terms of curves of maximal unilateral slope, and are constructed by means of implicit Euler schemes. An asymptotic analysis in the Mumford-Shah regime is also carried out. It shows the convergence towards a generalized heat equation outside a time increasing crack set.



rate research

Read More

We propose and study two variants of the Ambrosio-Tortorelli functional where the first-order penalization of the edge variable $v$ is replaced by a second-order term depending on the Hessian or on the Laplacian of $v$, respectively. We show that both the variants as above provide an elliptic approximation of the Mumford-Shah functional in the sense of $Gamma$-convergence. In particular the variant with the Laplacian penalization can be implemented without any difficulties compared to the standard Ambrosio-Tortorelli functional. The computational results indicate several advantages however. First of all, the diffuse approximation of the edge contours appears smoother and clearer for the minimizers of the second-order functional. Moreover, the convergence of alternating minimization algorithms seems improved for the new functional. We also illustrate the findings with several computational results.
75 - Yufei Yu , Weizhang Huang 2017
The Ambrosio-Tortorelli functional is a phase-field approximation of the Mumford-Shah functional that has been widely used for image segmentation. The approximation has the advantages of being easy to implement, maintaining the segmentation ability, and $Gamma$-converging to the Mumford-Shah functional. However, it has been observed in actual computation that the segmentation ability of the Ambrosio-Tortorelli functional varies significantly with different values of the parameter and it even fails to $Gamma$-converge to the original functional for some cases. In this paper we present an asymptotic analysis on the gradient flow equation of the Ambrosio-Tortorelli functional and show that the functional can have different segmentation behavior for small but finite values of the regularization parameter and eventually loses its segmentation ability as the parameter goes to zero when the input image is treated as a continuous function. This is consistent with the existing observation as well as the numerical examples presented in this work. A selection strategy for the regularization parameter and a scaling procedure for the solution are devised based on the analysis. Numerical results show that they lead to good segmentation of the Ambrosio-Tortorelli functional for real images.
We prove the existence of weak solutions to a system of two diffusion equations that are coupled by a pointwise volume constraint. The time evolution is given by gradient dynamics for a free energy functional. Our primary example is a model for the demixing of polymers, the corresponding energy is the one of Flory, Huggins and deGennes. Due to the non-locality in the equations, the dynamics considered here is qualitatively different from the one found in the formally related Cahn-Hilliard equations. Our angle of attack is from the theory of optimal mass transport, that is, we consider the evolution equations for the two components as two gradient flows in the Wasserstein distance with one joint energy functional that has the volume constraint built in. The main difference to our previous work arXiv:1712.06446 is the nonlinearity of the energy density in the gradient part, which becomes singular at the interface between pure and mixed phases.
126 - Yves van Gennip 2017
We study a graph based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph based problems inspired by partial differential equations (PDEs) and varational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph based problems to pattern forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme $Gamma$-converge to the Ohta-Kawasaki functional (which includes the standard graph based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint.
242 - Jeff Streets 2013
We show that K-energy minimizing movements agree with smooth solutions to Calabi flow as long as the latter exist. As corollaries we conclude that in a general Kahler class long time solutions of Calabi flow minimize both K-energy and Calabi energy. Lastly, by applying convergence results from the theory of minimizing movements, these results imply that long time solutions to Calabi flow converge in the weak distance topology to minimizers of the K-energy functional on the metric completion of the space of Kahler metrics, assuming one exists.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا