We propose a time-multiplexed DS-DBR/SOA-gated system to deliver low-power fast tuning across S-/C-/L-bands. Sub-ns switching is demonstrated, supporting 122$times$50 GHz channels over 6.05 THz using AI techniques.
Free-space optical (FSO) communications has the potential to revolutionize wireless communications due to its advantages of inherent security, high-directionality, high available bandwidth and small physical footprint. The effects of atmospheric turbulence currently limit the performance of FSO communications. In this letter, we demonstrate a system capable of indiscriminately suppressing the atmospheric phase noise encountered by independent optical signals spread over a range of 7.2 THz (encompassing the full optical C-Band), by actively phase stabilizing a primary optical signal at 193.1 THz (1552 nm). We show ~30 dB of indiscriminate phase stabilization over the full range, down to average phase noise at 10 Hz of -39.6 dBc/Hz when using an acousto-optic modulator (AOM) as a Doppler actuator, and -39.9 dBc/Hz when using a fiber-stretcher as group-delay actuator to provide the phase-stabilization systems feedback. We demonstrate that this suppression is limited by the noise of the independent optical signals, and that the expected achievable suppression is more than 40 dB greater, reaching around -90 dB/Hz at 10 Hz. We conclude that 40 Tbps ground-to-space FSO transmission would be made possible with the combination of our stabilization system and other demonstrated technologies.
An ultra-wide bandwidth (UWB) remote-powered positioning system for potential use in tracking floating objects inside space stations is presented. It makes use of battery-less tags that are powered-up and addressed through wireless power transfer in the UHF band and embed an energy efficient pulse generator in the 3-5 GHz UWB band. The system has been mounted on the ESA Mars Rover prototype to demonstrate its functionality and performance. Experimental results show the feasibility of centimeter-level localization accuracy at distances larger than 10 meters, with the capability of determining the position of multiple tags using a 2W-ERP power source in the UHF RFID frequency band.
An eight element, compact Ultra Wideband-Multiple Input Multiple Output (UWB-MIMO) antenna capable of providing high data rates for future Fifth Generation (5G) terminal equipments along with the provision of necessary bandwidth for Third Generation (3G) and Fourth Generation (4G) communications that accomplishes band rejection from 4.85 to 6.35 GHz by deploying a Inductor Capacitor (LC) stub on the ground plane is presented. The incorporated stub also provides flexibility to reject any selected band as well as bandwidth control. The orthogonal placement of the printed monopoles permits polarization diversity and provides high isolation. In the proposed eight element UWB-MIMO/diversity antenna, monopole pair 3-4 are 180o mirrored transform of monopole pair 1-2 which lie on the opposite corners of a planar 50 x 50 mm2 substrate. Four additional monopoles are then placed perpendicularly to the same board leading to a total size of 50 x 50 x 25 mm3 only. The simulated results are validated by comparing the measurements of a fabricated prototype. It was concluded that the design meets the target specifications over the entire bandwidth of 2 to 12 GHz with a reflection coefficient better than -10 dB (except the rejected band), isolation more than 17 dB, low envelope correlation, low gain variation, stable radiation pattern, and strong rejection of the signals in the Wireless Local Area Network (WLAN) band. Overall, compact and reduced complexity of the proposed eight element architecture, strengthens its practical viability for the diversity applications in future 5G terminal equipments amongst other MIMO antennas designs present in the literature.
Ultra wideband technology has shown great promise for providing high-quality location estimation, even in complex indoor multipath environments, but existing ultra wideband systems require tens to hundreds of milliwatts during operation. Backscatter communication has demonstrated the viability of astonishingly low-power tags, but has thus far been restricted to narrowband systems with low localization resolution. The challenge to combining these complimentary technologies is that they share a compounding limitation, constrained transmit power. Regulations limit ultra wideband transmissions to just -41.3 dBm/MHz, and a backscatter device can only reflect the power it receives. The solution is long-term integration of this limited power, lifting the initially imperceptible signal out of the noise. This integration only works while the target is stationary. However, stationary describes the vast majority of objects, especially lost ones. With this insight, we design Slocalization, a sub-microwatt, decimeter-accurate localization system that opens a new tradeoff space in localization systems and realizes an energy, size, and cost point that invites the localization of every thing. To evaluate this concept, we implement an energy-harvesting Slocalization tag and find that Slocalization can recover ultra wideband backscatter in under fifteen minutes across thirty meters of space and localize tags with a mean 3D Euclidean error of only 30 cm.
Introduction of spectrum-sharing in 5G and subsequent generation networks demand base-station(s) with the capability to characterize the wideband spectrum spanned over licensed, shared and unlicensed non-contiguous frequency bands. Spectrum characterization involves the identification of vacant bands along with center frequency and parameters (energy, modulation, etc.) of occupied bands. Such characterization at Nyquist sampling is area and power-hungry due to the need for high-speed digitization. Though sub-Nyquist sampling (SNS) offers an excellent alternative when the spectrum is sparse, it suffers from poor performance at low signal to noise ratio (SNR) and demands careful design and integration of digital reconstruction, tunable channelizer and characterization algorithms. In this paper, we propose a novel deep-learning framework via a single unified pipeline to accomplish two tasks: 1)~Reconstruct the signal directly from sub-Nyquist samples, and 2)~Wideband spectrum characterization. The proposed approach eliminates the need for complex signal conditioning between reconstruction and characterization and does not need complex tunable channelizers. We extensively compare the performance of our framework for a wide range of modulation schemes, SNR and channel conditions. We show that the proposed framework outperforms existing SNS based approaches and characterization performance approaches to Nyquist sampling-based framework with an increase in SNR. Easy to design and integrate along with a single unified deep learning framework make the proposed architecture a good candidate for reconfigurable platforms.
Thomas Gerard
,Christopher Parsonson
,Zacharaya Shabka
.
(2020)
.
"SWIFT: Scalable Ultra-Wideband Sub-Nanosecond Wavelength Switching for Data Centre Networks"
.
Thomas Gerard
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا